

Centro Assistenza Ecologica S.r.l. – Soc. Unipersonale Soggetta ad attività di direzione e controllo di CAE Holding S.r.l. Via Caduti del Lavoro, 24/i – 60131 ANCONA – Tel. 071.290201 – Fax 071.2867654 www.ecocae.it – mail: ecocae@ecocae.it

Centro Assistenza Ecologica S.r.l. Soc. Unipersonale lscr. Reg. Imprese AN , Partita IVA e C.F. 01541050421 – R.E.A. AN n. 149590 – Capitale Sociale € 100.000,00 i.v.

COMMITTENTE:

ASA S.R.L AZIENDA SERVIZI AMBIENTALI VIA SAN VINCENZO, 18 60013 CORINALDO (AN)

DOCUMENTO

REPORT ANNUALE 2016 DEL
MONITORAGGIO DELLA QUALITÀ DELL'ARIA,
DEL BIOGAS, DEL PERCOLATO, DELLE ACQUE
DEI PIEZOMETRI, DELLE ACQUE DI
RUSCELLAMENTO E DEL SEDIMENTO DEL
FOSSO PRESSO LA DISCARICA
DI CORINALDO (AN)

REDAZIONE:

CENTRO ASSISTENZA ECOLOGICA

via Caduti del lavoro, 24/i 60131 – Ancona tel. 071 290201 - fax 071 2867654

gruppo di lavoro: Dott. Chim. Benetti Emilio Ing. Di Biase Michele Per. Ind. Virgulti Stefano Ing. Morlacchi Federica Per. Ind. Longarini Ivan

DATA: REVISIONE:

GENNAIO 2017 REV. 1

SOMMARIO

1.	PREMESSA	3
2.	ATTIVITÀ DÌ CAMPIONAMENTO	4
3.	MONITORAGGIO DELLA QUALITÀ DELL'ARIA	9
3.1	CONDIZIONI METEOCLIMATICHE	9
3.2	RISULTATI QUALITÀ DELL'ARIA E METODICHE ANALITICHE	16
4.	MONITORAGGIO DEL BIOGAS	30
4.1	RISULTATI DEL MONITORAGGIO DEL BIOGAS	30
5.	MONITORAGGIO DEL PERCOLATO	35
5.1	RISULTATI ANALISI DEL PERCOLATO	37
6.	MONITORAGGIO DELLE ACQUE SUB-SUPERFICIALI E DI IPREGNAZIO	NE55
6.1 IMPF	RISULTATI ANALISI DELLE ACQUE SUB-SUPERFICIALI E	
7.	MONITORAGGIO DELLE ACQUE DÌ SOTTOTELO	83
8.	MONITORAGGIO DELLE ACQUE DI RUSCELLAMENTO	87
7.1	RISULTATI ANALISI DELLE ACQUE DI RUSCELLAMENTO	93
9.	RISULTATI ANALISI DEI SEDIMENTI DEL FOSSO CASALTA	102
9.1	RISULTATI ANALISI DEI SEDIMENTI DEL FOSSO CASALTA	103
10.	CONCLUSIONI	104
10.1	QUALITA' DELL'ARIA	104
10.2	BIOGAS	105
10.3	PERCOLATO	105
10.4	ACQUE SUB-SUPERFICIALI E DI IMPREGNAZIONE	106
10.5	ACQUE DI SOTTOTELO	108
10.6	ACQUE DI RUSCELLAMENTO	109
10 7	SEDIMENTO FOSSO CASALTA	109

1. PREMESSA

In seguito all'incarico conferito al Centro Assistenza Ecologica srl dalla ditta A.S.A. Srl, nell'ambito del Programma di Sorveglianza Ambientale dell'impianto per il periodo febbraio 2015 - dicembre 2016, nel corso dell'anno 2016 sono state condotte le campagne mensili di monitoraggio della qualità dell'aria, del biogas captato e del percolato, la campagna trimestrale delle acque di piezometro e delle acque di ruscellamento, e la campagna annuale del sedimento del Fosso Casalta, presso l'impianto di smaltimento rifiuti assimilabili agli urbani di via S. Vincenzo, ubicato nel comune di Corinaldo (AN).

Nel presente documento vengono raccolte le risultanze analitiche delle campagne di monitoraggio mensili eseguite nel corso del 2016. Durante tale periodo di monitoraggio, a causa dei lavori di ampliamento della discarica alcuni piezometri ed alcuni punti di campionamento sono risultati inaccessibili.

Al completamento dei lavori per le matrici acque di piezometri, di ruscellamento e sedimento tutti i vecchi punti di campionamento sono stati sostituiti da una nuova configurazione, il cui primo monitoraggio è stato eseguito nel mese di dicembre 2016.

Per le matrici qualità dell'aria e biogas non sono state apportate modifiche al programma di monitoraggio già in essere.

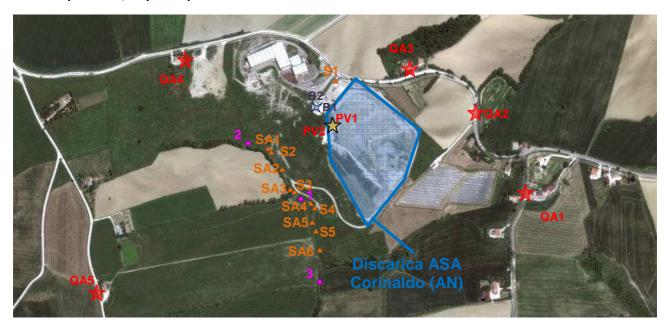
pag 4 di 110

2. ATTIVITÀ DÌ CAMPIONAMENTO

Le attività di campionamento per la valutazione della qualità dell'aria, la caratterizzazione del biogas, del percolato, delle acque sotterranee, delle acque di ruscellamento e del sedimento del Fosso si sono svolte nei periodi indicati in Tabella 1.

Tabella 1:Periodi monitorati.

COMPONENTE MONITORATA	PERIODI MONITORATI
QUALITÀ DELL'ARIA	14-15 gennaio 2016 18-19 febbraio 2016 17-18 marzo 2016 14-15 aprile 2016 19-20 maggio 2016 16-17giugno 2016 11-12 luglio 2016 1-2 agosto 2016 08-09 settembre 2016 12-13 ottobre 2016 07-08 novembre 2016
BIOGAS CAPTATO	15 gennaio 2016 19 febbraio 2016 17 marzo 2016 14 aprile 2016 19 maggio 2016 16 giugno 2016 12 luglio 2016 02 agosto 2016 08 settembre 2016 12 ottobre 2016 07 novembre 2016
PERCOLATO	14 gennaio 2016 18 febbraio 2016 17 marzo 2016 14 aprile 2016 19 maggio 2016 16 giugno 2016 12 luglio 2016 02 agosto 2016 08 settembre 2016 12 ottobre 2016 07 novembre 2016
ACQUE SOTTERRANEE	17 marzo 2016 17 giugno 2016 08 settembre 2016 14 dicembre 2016



pag	5	di	1	1	0

COMPONENTE MONITORATA	PERIODI MONITORATI
ACQUE DÌ RUSCELLAMENTO	- 17 giugno 2016 08 settembre 2016 14 dicembre 2016
SEDIMENTO FOSSO	14 dicembre 2016

Nelle figure seguenti sono illustrati i punti di misura relativamente ad ogni matrice esaminata. In particolare in Figura 1 si individua la configurazione di monitoraggio originaria, applicata sino al novembre 2016, mentre in Figura 2 è stata riportata la nuova configurazione attiva dal dicembre 2016.

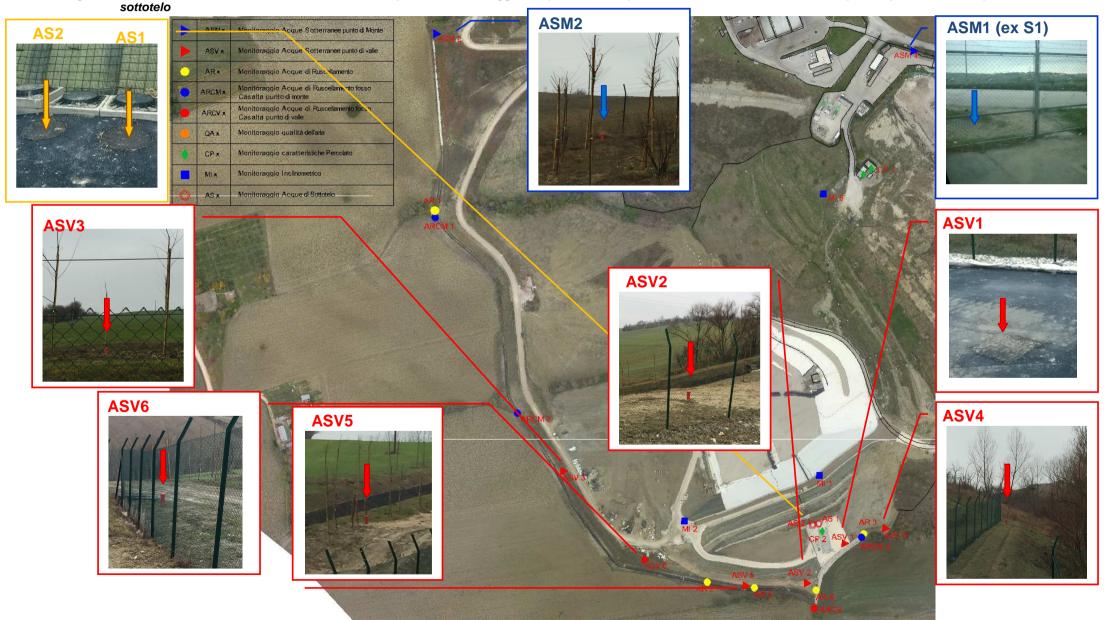
Figura 1: Vista aerea della discarica e localizzazione dei punti di monitoraggio della qualità dell'aria, biogas, percolato, acque dei piezometri e ruscellamento attivi sino al novembre 2016

la configurazione attiva sino al novembre 2016 prevedeva:

- n°5 postazioni di misura della qualità dell'aria QA1, QA2, QA3, QA4 e QA5;
- n° 2 punti di monitoraggio del Biogas di cui B1 ub icato in corrispondenza della vecchia linea di aspirazione e B2 ubicato in corrispondenza della nuova linea di aspirazione;
- n.2 punti di prelievo del percolato di cui PV1 ubicato nella vasca di raccolta di percolato del 3°lotto e PV2 in quella di raccolta di percolato del 1°e 2°lotto.

pag 6 di 110

- n.11 piezometri per il prelievo delle acque di sub-superficiali e di impregnazione (S1, SA1, S2, SA2, SA3, S3, SA4, S4, SA5, S5, SA6).
- n. 3 punti di prelievo di acque di ruscellamento, rispettivamente n.1 drenaggio sicurezza, n.2 fosso Casalta a monte dell'impianto, n.3 fosso Casalta a valle dell'impianto.
- n. 2 punti di prelievo di sedimento del Fosso in corrispondenza dei punti di prelievo delle acque di ruscellamento n°2 e 3.


In Figura 2 alla pagina seguente viene riportata la nuova configurazione dei punti di monitoraggio per le matrici acque di piezometri, di ruscellamento e sedimento, modificata a seguito dei lavori di ampliamento della discarica, attiva dal dicembre 2016.

Le n°5 postazioni di misura della qualità dell'ari a QA1, QA2, QA3, QA4 e QA5 non hanno subito variazioni rispetto ai precedenti monitoraggi, così come i n°2 punti di monitoraggio del Biogas di cui B1 ubicato in corrispondenza della vecchia linea di aspirazione e B2 ubicato in corrispondenza della nuova linea di aspirazione.

DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1

pag 7 di 110

Figura 2: Vista aerea della discarica e localizzazione dei punti di monitoraggio del percolato, acque di ruscellamento e sedimento, acque dei piezometri e acque di

Nella planimetria in figura 2 vengono indicati:

- n.2 punti di prelievo del percolato di cui CP1 ubicato nella vasca di raccolta di percolato dei vecchi lotti e CP2 in quella di raccolta di percolato dei nuovi lotti. Il punti CP1 corrisponde al vecchio punto di prelievo PV1, mentre CP2 è nuovo (vedi planimetria fig. 2);
- n.8 piezometri di cui 2 di monte: ASM1 e ASM2, e 6 di valle ASV1, ASV2, ASV3, ASV4, ASV5, ASV6. Il piezometro ASM1 corrisponde al vecchio piezometro S1, mentre gli altri sono di nuova realizzazione (vedi planimetria fig. 2 e doc. fotografica);
- n. 9 punti di prelievo di acque di ruscellamento di cui 3 monte ARCM1-ARCM2-ARCM3, 4 intermedi AR1-AR2-AR3-AR4-AR5 ed 1 di valle ARCV; Le postazioni di monitoraggio delle acque di ruscellamento sono tutte di nuova realizzazione (vedi planimetria fig. 2); Il punto ARCM1 corrisponde nella situazione attuale anche al punto AR1.
- n. 4 punti di campionamento del sedimento fosso di cui 1 a monte SARCM1, due intermedi SAR2 e SAR5 e 1 a valle SARCV, tutti in corrispondenza dei rispettivi punti di monitoraggio delle acque di ruscellamento; I punti di campionamento del sedimento fosso sono tutti di nuova realizzazione (vedi planimetria fig. 2);
- n. 2 punti di acque di sottotelo AS1 e AS2 rappresentativi di linee sotterranee di captazione. I punti di campionamento sono di nuova realizzazione e AS1 intercetta una linea realizzata alla base della "vecchia discarica" in corrispondenza dei vecchi piezometri oggetto del precedente monitoraggio, mentre AS2 raccoglie più linee di sottotelo realizzate sul lotto in ampliamento posizionate sul versante opposto rispetto alla discarica esistente. (vedi planimetria fig. 2 e doc. fotografica);

pag 9 di 110

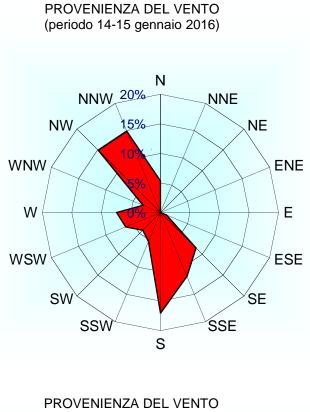
3. MONITORAGGIO DELLA QUALITÀ DELL'ARIA

Lo scopo dell'indagine è quello di valutare l'influenza sulla qualità dell'aria nell'intorno della discarica, a seguito delle attività che si svolgono nell'impianto.

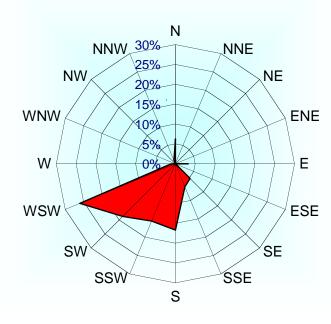
Sono state scelte 5 postazioni di misura nell'area perimetrale la discarica (Tabella 2; Figura 1), nelle quali sono stati misurati nell'arco di 24 ore gli inquinanti aerodispersi riportati in Tabella 3. La valutazione è stata effettuata per gli inquinanti considerati pericolosi per la salute e l'ambiente, indicati dalla committenza (DM 01/04/2002 n.60).

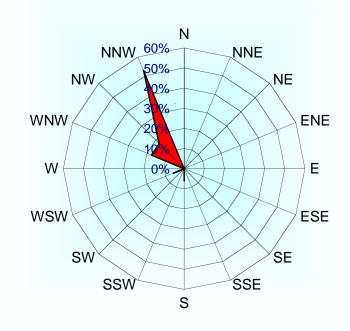
Tabella 2: Aree di indagine qualità dell'aria

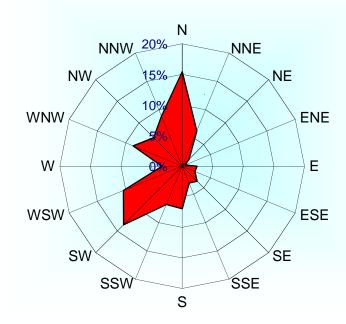
POSTAZIONI	DESCRIZIONE
Postazione 1	Ex scuola (QA1)
Postazione 2	Gasperini (QA2)
Postazione 3	Uffici A.S.A (QA3)
Postazione 4	"Sandreani" (QA4)
Postazione 5	"Romani" (QA5)

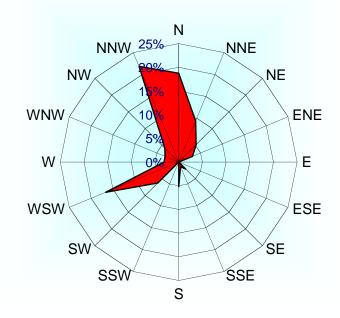

3.1 CONDIZIONI METEOCLIMATICHE

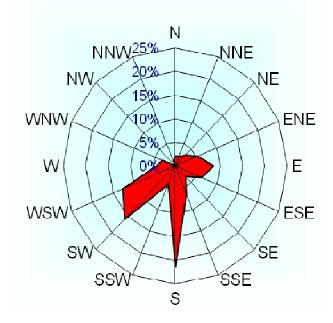

Alla pagine seguente, in figura 3 si riportano i grafici riassuntivi delle condizioni meteoclimatiche relative alla direzione del vento nel corso dell'anno 2016 durante i periodi di campionamento.

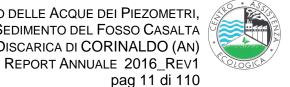

I dati sono stati forniti dalla Centralina Meteo presente all'interno dell'impianto ASA srl.

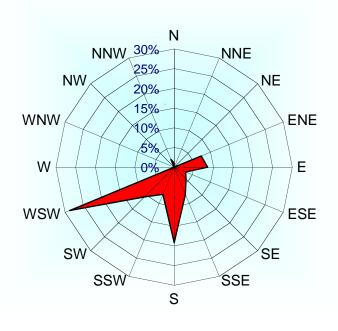

Figura 3: Dati di direzione del vento registrati durante il periodo di monitoraggio della qualità dell'aria.

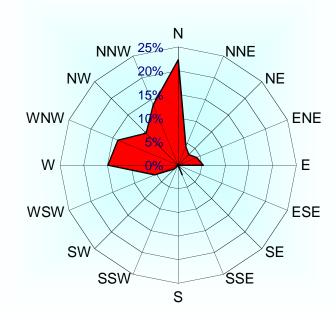


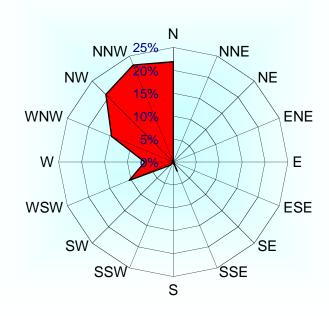

PROVENIENZA DEL VENTO (periodo 18-19 Febbraio 2016)

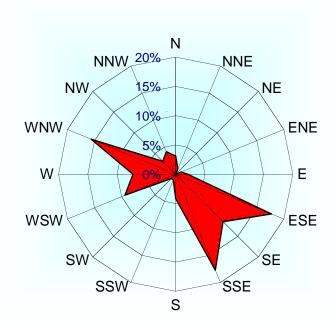

PROVENIENZA DEL VENTO (periodo 19-20 Maggio 2016)

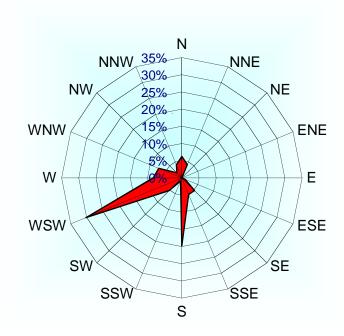

PROVENIENZA DEL VENTO (periodo 17-18 marzo 2016)

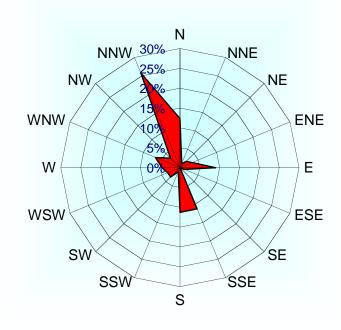

PROVENIENZA DEL VENTO (periodo 16-17 Giugno 2016)




PROVENIENZA DEL VENTO (periodo 11-12 Luglio 2016)


PROVENIENZA DEL VENTO (periodo 1-2 agosto 2016)


PROVENIENZA DEL VENTO (8-9 settembre 2016)


PROVENIENZA DEL VENTO (12-13 ottobre 2016)

PROVENIENZA DEL VENTO (periodo 07-08 novembre 2016)

PROVENIENZA DEL VENTO (periodo 14-15 dicembre 2016)

pag 12 di 110

Nella Tabella 3 è riportata l'ubicazione di ciascuna postazione rispetto alla sorgente, rappresentata dalla discarica, ottenuta in base alla direzione del vento dominante nel mese di riferimento.

Tabella 3: Ubicazione di ciascuna postazione rispetto alla discarica (M = monte; V = valle).

SITO	QA1	QA2	QA3	QA4	QA5
14-15 gennaio 2016	M	V	V	V	М
18-19 febbraio 2016	V	V	M	М	М
17-18 marzo 2016	V	M	M	М	M
14-15 aprile 2016	V	V	V	М	М
19-20 maggio 2016	M	V	V	V	М
16-17 giugno 2016	M	V	V	V	М
11-12 Luglio 2016	V	V	V	V	M
1-2 agosto 2016	V	М	M	М	V
8-9 Settembre 2016	V	V	M	М	V
12-13 Ottobre 2016	M	М	V	V	M
07-08 novembre 2016	V	V	V	М	М
14-15 dicembre 2016	V	V	M	М	V

Nella tabella successiva Tab 4 è stata indicata la direzione del vento rispetto al periodo di campionamento dell'olfattometria.

Tabella 4: Ubicazione di ciascuna postazione rispetto alla discarica (M = monte; V = valle), rispetto all'olfattometria

SITO	QA1	QA2	QA3	QA4	QA5
15-gen-16	M	M	V	V	М
19-feb-16	V	V	М	М	М
18-mar-16	М	М	М	М	V

A COLOGICA

pag 13 di 110

SITO	QA1	QA2	QA3	QA4	QA5
15-apr-16	V	M	M	М	V
19-mag-16	V	V	V	V	М
16-giu-16	M	V	M	М	V
11-12 Luglio 2016	M	М	V	М	V
1-2 agosto 2016	V	М	M	М	V
8-9 Settembre 2016	V	V	М	М	V
12-13 Ottobre 2016	V	V	М	М	V
07-08 novembre 2016	V	V	V	V	М
14-15 dicembre 2016	М	М	V	V	V

Per quanto riguarda la situazione anemologica nel monitoraggio del mese di gennaio, nei giorni 14-15 (Figura 3 e Tabelle 3 e 4) la direzione prevalente di provenienza del vento è S (17%), anche se si riscontrano significative percentuali anche in direzione NW (14,9%) e NNW (14,9%).

I punti QA1 e QA5 risultano quindi a monte della discarica, mentre i punti QA2, QA3 e QA4 si trovano a valle. La stessa situazione si riscontra per quanto riguarda l'olfattometria, fatta eccezione per il punto QA2 che invece risulta a monte.

Nel monitoraggio eseguito nel mese di febbraio, nei giorni 18-19 (Figura 3 e Tabelle 3 e 4) le direzioni prevalenti di provenienza del vento è NNW (52,9%). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA3, QA4 e QA5 e quelli a valle sono QA1, QA2. La stessa situazione si riscontra considerando la direzione del vento puntuale durante il campionamento dell'olfattometria.

E PERCOLATO
ELLE ACQUE DI
DSSO CASALTA
RINALDO (AN)
E 2016_REV1
pag 14 di 110

Nel mese di marzo 2016 (Figura 3 e Tabelle 3 e 4) la direzione prevalenti del

vento è NNW (21,9%). In base alla direzione del vento dominante tutti i punti di monitoraggio si trovano a monte della discarica fatta eccezione per il sito identificato

come QA1 che si trova a valle.

Per quanto riguarda la direziona del vento puntuale durante il campionamento dell'olfattometria è necessario un cambio di direzione tale per cui l'unica postazione a

valle dell'impianto è QA5.

Nel mese di aprile 2016 (Figura 3 e Tabelle 3 e 4) la direzione prevalenti del vento è WSW (17%), anche se si riscontrano significative percentuali anche in direzione SW (14,9%). In base alla direzione del vento dominante i siti a monte della discarica

risultano quindi QA4 e QA5 e quelli a valle sono QA1, QA2 e QA3.

Durante il campionamento per l'analisi olfatto metrica le posizione dei siti rispetto

al vento dominante erano a monte QA2, QA3 e QA4 mentre a valle QA1 e QA5.

Nel mese di maggio 2016 (Figura 3 e Tabelle 3 e 4) la direzione prevalenti del vento è N (15%), anche se si riscontrano significative percentuali anche in direzione SW (>10%). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA1 e QA5 e quelli a valle sono QA2, QA3 e QA4.

Considerando la direzione del vento puntuale durante il campionamento dell'olfattometria si riscontra che tutti i punti sono situati a valle fatta eccezione per il QA5 ubicato a monte dell'impianto.

Nel mese di giugno 2016 (Figura 3 e Tabelle 3 e 4) la direzione prevalenti del

vento è S (>21 %) anche se si riscontrano significative percentuali anche in direzione

SW (16 %). In base alla direzione del vento dominante i siti a monte della discarica

risultano quindi QA1 e QA5 e quelli a valle sono QA2, QA3, e QA4

Secondo la direzione del vento puntuale durante il campionamento dell'olfattometria

risultano a monte dell'impianto QA1, QA3, QA4 mentre a valle QA2 e QA5

REPORT ANNUALE 2016_REV1 pag 15 di 110

Nel mese di agosto 2016 (Figura 3 e Tabelle 3 e 4) la direzione principale del vento nel periodo di misura considerato è N (22.3%). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA2, QA3 e QA4.QA2 e quelli a valle sono QA1 e QA5.

La stessa situazione si riscontra considerando la direziona del vento puntuale durante il campionamento dell'olfattometria.

Nel mese di settembre 2016 (Figura 3 e Tabelle 3 e 4) la direzione principale del vento nel periodo di misura considerato è NNW (22,9 %) ma si riscontrano percentuali significative anche in direzione N (21,9%) e NW (20,8%). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA3 e QA4 e quelli a valle sono QA1, QA2 e QA5.

La stessa situazione si riscontra considerando la direziona del vento puntuale durante il campionamento dell'olfattometria.

Nel mese di ottobre 2016 (Figura 3 e Tabelle 3 e 4) la direzione principale del vento nel periodo di misura considerato è ESE e SSE (>15%), sono state inoltre rilevate significative percentuali anche in direzione WNW (15 %). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA1, QA2 e QA5 quelli a valle sono QA3 e QA4.

Considerando la direzione del vento puntuale durante il campionamento dell'olfattometria si riscontrano variazioni sui tutti i punti in quanto QA1 e QA2 e QA5 risultano a valle, mentre QA3 e QA4 a monte.

Nel mese di novembre 2016 (Figura 3 e Tabelle 3 e 4) la direzione principale del vento nel periodo di misura considerato è WSW (30%), sono state inoltre rilevate significative percentuali anche in direzione S (20 %). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA4 e QA5 e quelli a valle sono QA1, QA3 e QA3. La stessa situazione si riscontra considerando la direziona del vento puntuale durante il campionamento dell'olfattometria, eccetto che per il campione QA4 che risulta a valle.

E PERCOLATO
ELLE ACQUE DI
DSSO CASALTA
RINALDO (AN)
E 2016_REV1
pag 16 di 110

Nel mese di dicembre 2016 (Figura 2 e Tabelle 3 e 4) la direzione principale del vento nel periodo di misura considerato è NNW (>25 %) mentre riscontrano percentuali meno significative in direzione e (10%) e S/SSE (>10%). In base alla direzione del vento dominante i siti a monte della discarica risultano quindi QA3 e QA4 e quelli a valle sono QA1, QA2 e QA5. Considerando la direzione del vento puntuale durante il campionamento dell'olfattometria si riscontrano variazioni sui punti QA1 e QA2 che risultano a monte e sui punti QA3 e QA4 che risultano a valle.

3.2 RISULTATI QUALITÀ DELL'ARIA E METODICHE ANALITICHE

In tabella 5 vengono riportate il flusso di campionamento, le metodiche e le tecniche analitiche ed i limiti di rilevabilità (LR) utilizzati.

Tabella 5: Parametri monitorati nei 5 siti scelti (QA1÷5) e rispettivi unità di misura (UM), flusso di campionamento, metodi e tecniche analitiche, limiti di rilevabilità (LR) utilizzati.

PARAMETRO	UM	FLUSSO	METODO ANALITICO	TECNICA ANALITICA	LR
Polveri PM10	Polveri PM10 μg/m ³		UNI EN 12341:2001	Gravimetria	0.01
Metano CH4	mg/m ³	non applicabile	MIP 09 FID	Gascromatografia FID	0,6
Idrocarburi non metanici	mg/m ³	non applicabile	MIP 09 FID	Gascromatografia FID	0,6
Ammoniaca NH ₃	noniaca NH2 mg/m²		Radiello Met T1 2002-2003	Spettrofotometria- UV-VIS	0.01
Acido Solfidrico H2S	mg/m ³	non applicabile	Radiello Met H1 2002-2003	Spettrofotometria- UV-VIS	0.01
Mercaptani	mg/m ³	non applicabile	MIP 11 PID	Fotoionizzatore PID	0.003
Olfattometria (Unità odorimetriche)	OUE/m ³	non applicabile	UNI EN 13725:2004	-1	non applicabile
Benzene	$\mu g/m^3$	non applicabile	Radiello Met E1 2002-2003	GC spettrometria di massa	0.001
Toluene	$\mu g/m^3$	non applicabile	Radiello Met E1 2002-2003	GC spettrometria di massa	0.001
Etilbenzene	$\mu g/m^3$	non applicabile	Radiello Met E1 2002-2003	GC spettrometria di massa	0.001
Xileni μg/m³		non applicabile	Radiello Met E1 2002-2003	GC spettrometria di massa	0.001

Nella Tabella 6 a pagina seguente sono riportati i risultati analitici rilevati nelle 5 postazioni (QA1-QA5) e il confronto con la media calcolata per ciascun parametro nell'intero periodo di monitoraggio relativo all'anno 2016. In Figura 4 vengono riportati i grafici rappresentativi dell'andamento delle concentrazioni di contaminanti in merito alla qualità dell'aria nel corso del 2016.

Monitoraggio della Qualità dell'aria, Biogas e Percolato delle Acque dei Piezometri, delle Acque di Ruscellamento e del Sedimento del Fosso Casalta Discarica di CORINALDO (An) Report Annuale 2016 Rev1

COMETRI, DELLE OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 17 di 110

Tabella 6: Risultati analitici dei parametri rilevati durante le 12 campagne di monitoraggio nei 5 siti di monitoraggio (QA1÷QA5), media calcolata per ciascun parametro nell'intero periodo di monitoraggio (anno 2016) e riferimenti e limiti normativi per PM10 e Benzene

SITO	PARAMETRI	14-15 GEN16	18-19 FEB16	17-18 MAR16	14-15 APR 16	19-20 MAG16	16-17 GIU16	11-12 LUG16	1-2 AGO16	8-9 SET16	12-13 OTT16	07-08 NOV16	14-15 DIC16	MEDIA	DM 01/04/2002
	PM10 (μg/m3)	30	28	33	32	29	40	30	17	20	31	18	40	29,00	50
	Metano (mg/m3)	0,5	0,41	0,46	0,33	0,3	0,21	0,13	0,18	0,12	0,1	0,05	0,03	0,24	
	Idrocarburi non metanici (NMHC) (mg/m3)	0,44	0,6	0,74	0,55	0,21	0,18	0,2	0,22	0,15	0,1	0,08	0,05	0,29	
	Ammoniaca (NH3) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Acido Solfidrico (H2S) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
QA1	Mercaptani (mg/m3)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0,004	
	Unità Odorimetrica (OUe/m3)	20	13	29	54	26	27	72	45	13	29	16	24	30,67	
	Benzene (μg/m3)	0,36	0,39	0,43	0,4	0,22	0,25	0,2	0,2	0,23	0,15	0,11	0,08	0,25	5
	Toluene (μg/m3)	0,15	0,2	0,31	0,41	0,34	0,39	0,3	0,31	0,27	0,16	0,12	0,1	0,26	
	Etilbenzene (μg/m3)	0,3	0,25	0,36	0,28	0,17	0,15	0,13	0,12	0,13	0,1	0,08	0,1	0,18	
	Xileni (μg/m3)	0,22	0,2	0,29	0,24	0,15	0,2	0,21	0,16	0,11	0,1	0,1	0,11	0,17	
	PM10 (μg/m3)	30	31	38	38	31	40	16	12	21	16	20	31	27,00	50
QA2	Metano (mg/m3)	0,35	0,7	0,62	0,56	0,35	0,31	0,25	0,24	0,11	0,11	0,07	0,05	0,31	
	Idrocarburi non metanici (NMHC) (mg/m3)	0,2	0,25	0,2	0,29	0,13	0,2	0,17	0,13	0,13	0,1	0,06	0,03	0,16	

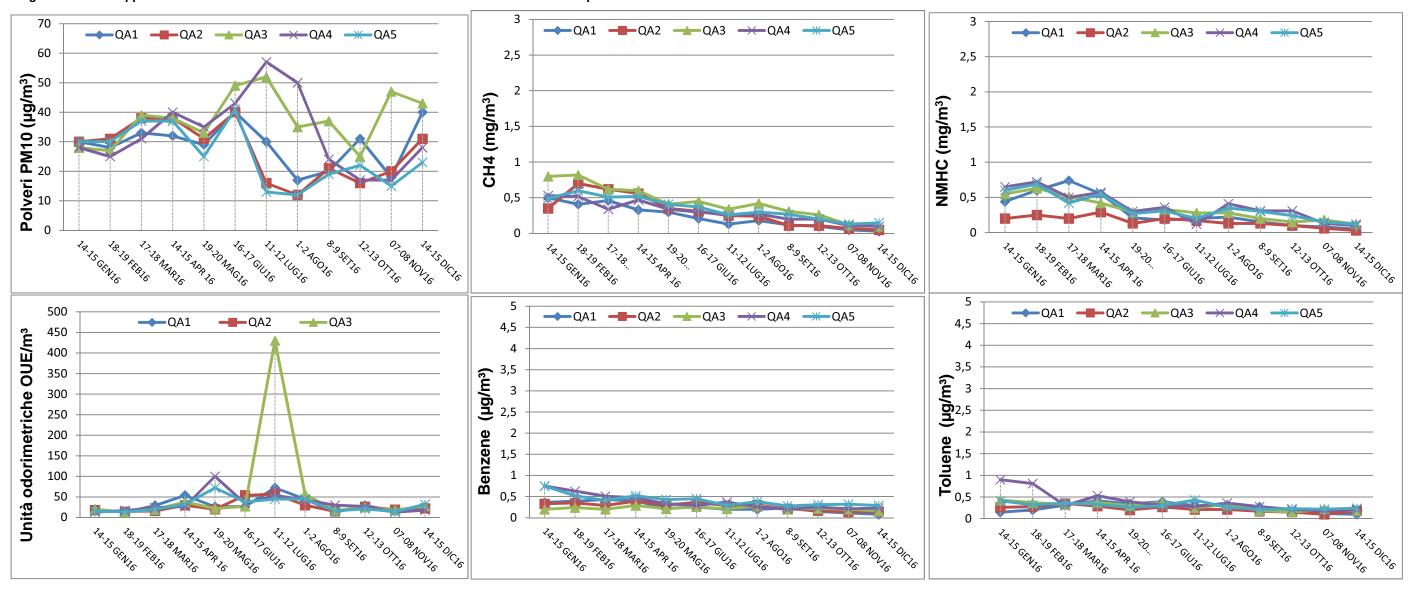
Monitoraggio della Qualità dell'aria, Biogas e Percolato delle Acque dei Piezometri, delle Acque di Ruscellamento e del Sedimento del Fosso Casalta Discarica di CORINALDO (An) Report Annuale 2016_Rev1

SITO	PARAMETRI	14-15 GEN16	18-19 FEB16	17-18 MAR16	14-15 APR 16	19-20 MAG16	16-17 GIU16	11-12 LUG16	1-2 AGO16	8-9 SET16	12-13 OTT16	07-08 NOV16	14-15 DIC16	MEDIA	DM 01/04/2002
	Ammoniaca (NH3) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Acido Solfidrico (H2S) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Mercaptani (mg/m3)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0,004	
	Unità Odorimetrica (OUe/m3)	18	14	16	30	20	54	57	30	15	26	19	22	26,75	
QA2	Benzene (μg/m3)	0,33	0,35	0,29	0,39	0,3	0,36	0,29	0,3	0,21	0,17	0,14	0,15	0,27	5
	Toluene (μg/m3)	0,26	0,28	0,35	0,29	0,2	0,27	0,21	0,21	0,17	0,15	0,1	0,18	0,22	
	Etilbenzene (μg/m3)	0,2	0,3	0,31	0,34	0,24	0,31	0,22	0,26	0,2	0,19	0,21	0,19	0,25	
	Xileni (μg/m3)	0,27	0,19	0,21	0,3	0,31	0,33	0,37	0,26	0,24	0,21	0,13	0,14	0,25	
	PM10 (μg/m3)	28	27	39	38	33	49	52	35	37	25	47	43	37,75	50
	Metano (mg/m3)	0,8	0,82	0,62	0,6	0,41	0,45	0,34	0,42	0,31	0,26	0,12	0,1	0,44	
	Idrocarburi non metanici (NMHC) (mg/m3)	0,55	0,63	0,51	0,42	0,29	0,33	0,28	0,28	0,2	0,15	0,18	0,12	0,33	
QA3	Ammoniaca (NH3) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Acido Solfidrico (H2S) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Mercaptani (mg/m3)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0,004	
	Unità Odorimetrica (OUe/m3)	20	13	19	38	22	27	430	57	17	25	18	28	59,50	

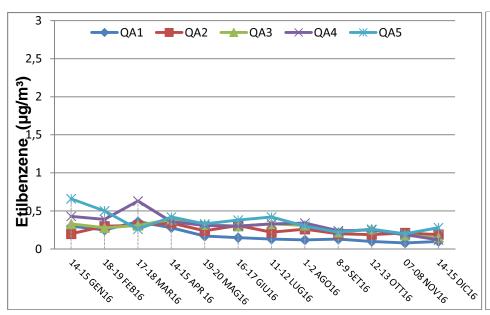
Monitoraggio della Qualità dell'aria, Biogas e Percolato delle Acque dei Piezometri, delle Acque di Ruscellamento e del Sedimento del Fosso Casalta Discarica di CORINALDO (An) Report Annuale 2016_Rev1

SITO	PARAMETRI	14-15 GEN16	18-19 FEB16	17-18 MAR16	14-15 APR 16	19-20 MAG16	16-17 GIU16	11-12 LUG16	1-2 AGO16	8-9 SET16	12-13 OTT16	07-08 NOV16	14-15 DIC16	MEDIA	DM 01/04/2002
	Benzene (μg/m3)	0,2	0,24	0,2	0,29	0,21	0,26	0,21	0,28	0,2	0,22	0,2	0,16	0,22	5
QA3	Toluene (μg/m3)	0,43	0,37	0,33	0,37	0,3	0,37	0,25	0,33	0,19	0,15	0,22	0,19	0,29	
	Etilbenzene (μg/m3)	0,33	0,28	0,31	0,39	0,32	0,3	0,33	0,31	0,22	0,26	0,18	0,15	0,28	
	Xileni (μg/m3)	0,2	0,31	0,38	0,36	0,26	0,33	0,26	0,3	0,26	0,21	0,17	0,21	0,27	
	PM10 (μg/m3)	28	25	31	40	35	43	57	50	24	17	17	28	32,92	50
	Metano (mg/m3)	0,53	0,52	0,34	0,47	0,34	0,3	0,26	0,27	0,2	0,2	0,11	0,1	0,30	
	Idrocarburi non metanici (NMHC) (mg/m3)	0,65	0,72	0,5	0,57	0,3	0,36	0,12	0,41	0,31	0,31	0,13	0,1	0,37	
	Ammoniaca (NH3) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Acido Solfidrico (H2S) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
QA4	Mercaptani (mg/m3)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0,004	
	Unità Odorimetrica (OUe/m3)	13	17	24	27	100	34	54	43	30	27	13	18	33,33	
	Benzene (μg/m3)	0,75	0,63	0,51	0,47	0,33	0,29	0,37	0,26	0,2	0,25	0,21	0,23	0,38	5
	Toluene (μg/m3)	0,9	0,81	0,3	0,53	0,39	0,31	0,28	0,36	0,28	0,21	0,18	0,21	0,40	
	Etilbenzene (μg/m3)	0,43	0,39	0,63	0,36	0,31	0,3	0,33	0,34	0,24	0,25	0,19	0,12	0,32	
	Xileni (μg/m3)	0,7	0,63	0,41	0,45	0,34	0,38	0,43	0,41	0,3	0,29	0,23	0,25	0,40	

Monitoraggio della Qualità dell'aria, Biogas e Percolato delle Acque dei Piezometri, delle Acque di Ruscellamento e del Sedimento del Fosso Casalta Discarica di CORINALDO (An) Report Annuale 2016_Rev1



SITO	PARAMETRI	14-15 GEN16	18-19 FEB16	17-18 MAR16	14-15 APR 16	19-20 MAG16	16-17 GIU16	11-12 LUG16	1-2 AGO16	8-9 SET16	12-13 OTT16	07-08 NOV16	14-15 DIC16	MEDIA	DM 01/04/2002
	PM10 (μg/m3)	30	30	37	37	25	41	13	12	19	22	15	23	25,33	50
	Metano (mg/m3)	0,49	0,6	0,51	0,52	0,41	0,37	0,26	0,3	0,27	0,2	0,13	0,15	0,35	
	Idrocarburi non metanici (NMHC) (mg/m3)	0,6	0,69	0,42	0,55	0,27	0,31	0,2	0,35	0,3	0,24	0,15	0,12	0,35	
	Ammoniaca (NH3) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
	Acido Solfidrico (H2S) (mg/m3)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0,01	
QA5	Mercaptani (mg/m3)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0,004	
	Unità Odorimetrica (OUe/m3)	15	14	20	32	72	38	45	45	16	21	14	32	30,33	
	Benzene (μg/m3)	0,75	0,52	0,41	0,52	0,43	0,45	0,29	0,38	0,28	0,31	0,32	0,29	0,41	5
	Toluene (μg/m3)	0,41	0,32	0,36	0,33	0,26	0,3	0,43	0,26	0,21	0,23	0,22	0,24	0,30	
	Etilbenzene (μg/m3)	0,66	0,5	0,26	0,42	0,33	0,38	0,42	0,3	0,22	0,26	0,2	0,28	0,35	
	Xileni (μg/m3)	0,3	0,36	0,42	0,45	0,37	0,31	0,36	0,3	0,23	0,19	0,15	0,13	0,30	



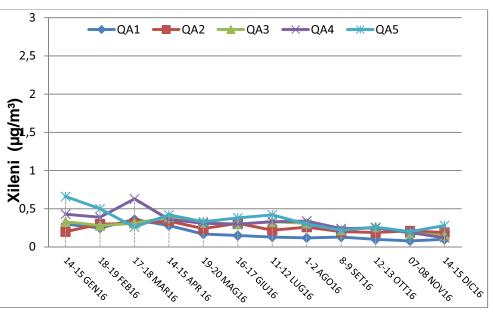


Figura 4: Grafici rappresentativi dell'andamento delle concentrazioni di contaminanti in merito alla qualità dell'aria nel corso del 2016

E PERCOLATO
ELLE ACQUE DI
DSSO CASALTA
RINALDO (AN)
E 2016_REV1
pag 23 di 110

In riferimento al monitoraggio del <u>14-15 gennaio 2016</u> le unità odorimetriche (Tabella 6) hanno valori compresi tra 13÷20 OUE/m3 su tutti i punti individuati.

Il metano ha valori simili in tutti i siti variabili tra 0.35÷0.50 mg/m3. Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μg/m3 indicato dal DM 01/04/2002 n.60; le concentrazioni sono comprese tra 28 μg/m3 e 30 μg/m3. Gli idrocarburi non metanici hanno valori simili in tutti i siti variabili tra 0.24÷0.65 mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti. In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

In riferimento al monitoraggio del <u>18-19 febbraio 2016</u> le unità odorimetriche (Tabella 6) hanno valori compresi tra 13 ÷ 17 OUE/m3 su tutti i punti individuati.

Il metano ha valori simili in tutti i siti variabili tra 0.41÷0.82 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μg/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono comprese tra 25 μg/m3 (QA4) e 31 μg/m3 (QA2). Gli idrocarburi non metanici hanno valori simili in tutti i siti variabili tra 0.25÷0.72 mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

In riferimento al monitoraggio del <u>17-18 marzo 2016</u> le unità odorimetriche (Tabella 6) hanno valori compresi tra 16÷29 OUE/m3 su tutti i punti individuati. Il metano ha valori simili in tutti i siti variabili tra 0.34 ÷0.62 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μ g/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 31 μ g/m3 e 39 μ g/m3. Gli idrocarburi non metanici hanno valori simili in tutti i siti variabili tra 0,2÷0.64 mg/m3.

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

O LOGICA

pag 24 di 110

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

In riferimento al monitoraggio del <u>14-15 aprile 2016</u> le unità odorimetriche (Tabella 6) hanno valori compresi tra 27÷ 54 OUE/m3 su tutti i punti individuati. Il metano ha valori simili in tutti i siti variabili tra 0,33÷0.60 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μg/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 32 μg/m3 e 40 μg/m3. Gli idrocarburi non metanici hanno valori simili in tutti i siti variabili tra 0,29÷0.57mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

In riferimento al monitoraggio del <u>19-20 maggio 2016</u> le unità odorimetriche (Tabella 6) presentano oscillazioni con valori compresi tra 20÷100 OUE/m3 su tutti i punti individuati. Il metano ha valori simili in tutti i siti variabili tra 0,30÷0.41 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μg/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 25 μg/m3 e 35 μg/m3. Gli idrocarburi non metanici hanno valori simili in tutti i siti variabili tra 0,3÷0.41 mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

In riferimento al monitoraggio del <u>16-17 giugno 2016</u> le unità odorimetriche (Tabella 6) hanno valori compresi tra 27÷54 OUE/m3 su tutti i punti individuati. Il metano ha valori simili in tutti i siti variabili tra 0.21÷0.45 mg/m3.

pag 25 di 110

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μ g/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 40 μ g/m3 e 49 μ g/m3. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,18÷0,36 mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

In riferimento al monitoraggio del <u>11-12 luglio 2016</u> le unità odorimetriche (Tabella 6) hanno valori compresi tra 45 ÷ 72 OUE/m3 su tutti i punti individuati, tranne che sul QA3 su cui si registra un picco paria 430 OUE/m3.

Il metano ha valori simili in tutti i siti variabili tra 0,13 ÷0,34 mg/m3.

Per le Polveri PM10 si osservano due leggeri sfioramenti del limite giornaliero di 50 μg/m3 indicato dal DM 01/04/2002 n.60, sui punti QA3 e QA4 presumibilmente dovuti ai lavori in corso di ampliamento della discarica. Le restanti concentrazioni sono sono comprese tra 16 μg/m3 e 30 μg/m3. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,12÷0,28 mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

L'ammoniaca, l'acido solfidrico ed i mercaptani totali hanno concentrazioni inferiori ai rispettivi limiti di rilevabilità in tutti i siti.

In riferimento al monitoraggio del <u>01-02 agosto 2016</u> le unità odorimetriche (Tabella 6) presentano valori bassi con oscillazioni comprese tra 30 ÷ 57 OUE/m3 su tutti i punti individuati, compreso il QA3 su cui i valori risultano rientrati nel normale range di lavoro. Il metano ha valori simili in tutti i siti variabili tra 0,18 ÷0,42 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 µg/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono comprese tra 12 µg/m3 e 50

DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1 pag 26 di 110

A STORY OF THE PROPERTY OF THE

μg/m3, registrato sul QA4. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,13 ÷0,41 mg/m3

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

L'ammoniaca, l'acido solfidrico ed i mercaptani totali hanno concentrazioni inferiori ai rispettivi limiti di rilevabilità in tutti i siti.

In riferimento al monitoraggio del <u>08-09 settembre 2016</u> le unità odorimetriche (Tabella 6) presentano oscillazioni con valori compresi tra 13 ÷ 30 OUE/m3 su tutti i punti individuati.

Il metano ha valori simili in tutti i siti variabili tra 0,11 ÷0,31 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μ g/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 19 μ g/m3 e 37 μ g/m3. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,13 \div 0,31 mg/m3.

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

L'ammoniaca, l'acido solfidrico ed i mercaptani totali hanno concentrazioni inferiori ai rispettivi limiti di rilevabilità in tutti i siti.

In riferimento al monitoraggio del <u>12-13 ottobre 2016</u> le unità odorimetriche (Tabella 6) hanno valori bassi compresi tra 21 ÷ 29 OUE/m3 su tutti i punti individuati.

Il metano ha valori simili in tutti i siti variabili tra 0,1 ÷0,26 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μ g/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 16 μ g/m3 e 31 μ g/m3. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,1 \div 0,31 mg/m3.

DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1 pag 27 di 110

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

L'ammoniaca, l'acido solfidrico ed i mercaptani totali hanno concentrazioni inferiori ai rispettivi limiti di rilevabilità in tutti i siti.

In riferimento al monitoraggio del <u>07-08 novembre 2016</u> le unità odorimetriche (Tabella 6) hanno valori bassi compresi tra 13 ÷ 19 OUE/m3 su tutti i punti individuati.

Il metano ha valori simili in tutti i siti variabili tra 0,05 ÷0,13 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μ g/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 15 μ g/m3 e 47 μ g/m3. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,060 \div 0,18 mg/m3.

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

L'ammoniaca, l'acido solfidrico ed i mercaptani totali hanno concentrazioni inferiori ai rispettivi limiti di rilevabilità in tutti i siti.

In riferimento al monitoraggio del 14-15 dicembre 2016 le unità odorimetriche (Tabella

6) hanno valori bassi compresi tra 18 ÷ 32 OUE/m3 su tutti i punti individuati.

Il metano ha valori simili in tutti i siti variabili tra 0,03÷0,15 mg/m3.

Per le Polveri PM10 non si osservano superamenti del limite giornaliero di 50 μ g/m3 indicato dal DM 01/04/2002 n.60. Le concentrazioni sono simili in tutti i siti e sono comprese tra 23 μ g/m3 e 43 μ g/m3. Gli idrocarburi non metanici hanno valori molto simili in tutti i siti variabili tra 0,03 \div 0,12 mg/m3.

Per le sostanze organiche volatili, il benzene, l'etilbenzene, il toluene e gli xileni si osservano concentrazioni basse e simili in tutti i siti.

pag 28 di 110

In particolare il Benzene mostra valori inferiori ai valori indicati dal DM 01/04/2002 n.60 su tutti i punti di prelievo.

L'ammoniaca, l'acido solfidrico ed i mercaptani totali hanno concentrazioni inferiori ai rispettivi limiti di rilevabilità in tutti i siti.

In sintesi per quanto riguarda il confronto tra i siti non si evidenziano differenze significative (Tabella 6).

I valori di ammoniaca, acido solfidrico e mercaptani totali sono risultati sempre inferiori al rispettivo limite di rivelabilità.

Le sostanze organiche volatili hanno mostrato contenuti bassi, e sempre inferiori al limite normativo.

Anche per le polveri PM10 si osservano concentrazioni sempre inferiori al limite normativi previsto dal DM 60/02 e simili tra i 5 siti di monitoraggio, tranne che nel monitoraggio del luglio 2016 in cui sui punti QA3 e QA4 si sono verificati dei lievi superamenti, presumibilmente dovuti ai lavori di cantiere in corso per l'ampliamento della discarica. Tali valori già dal mese successivo, agosto 2016 sono subito rientrati e non sono stati registrati altri superamenti nel corso del 2016. Complessivamente i valori di PM10 sono in linea con quanto registrato nel 2015.

Le concentrazioni di metano non mostrano differenze significative fra i 5 siti nel corso del 2016 ed hanno valori contenuti. Rispetto al 2015 i dati di metano rilevati risultano mediamente inferiori.

Analogamente al caso del metano le concentrazioni degli idrocarburi non metanici sono contenute e simili in tutta l'area monitorata. Rispetto al 2015 i dati di metano rilevati risultano mediamente inferiori.

Le unità odorimetriche presentano valori inferiori rispetto allo stesso periodo di monitoraggio dell'anno precedente (2015). Infatti il valore medio 2016 registrato di unità odorimentiche è di circa 30 OUE/m3 su tutti i punti monitorati, tranne un unico picco registrato sul punto QA3 di 430 OUE/m3 nel mese luglio, comunque rientrato nei monitoraggi successivi.

Per quanto riguarda il benzene, le concentrazioni rilevate sono sempre risultate inferiori al limite previsto dal DM 60/02.

Le concentrazioni di etilbenzene, toluene e xileni non mostrano differenze significative fra i 5 siti.

DI COGLER

pag 30 di 110

4. MONITORAGGIO DEL BIOGAS

Il monitoraggio del biogas prodotto dal corpo rifiuti è stato effettuato campionando il biogas in corrispondenza di n° 2 punti di captazione, p recisamente l'uno in corrispondenza della vecchia linea di captazione del biogas (linea vecchia), e l'altro in corrispondenza della nuova linea di captazione (linea nuova). In tabella 7 sono riportati i parametri monitorati.

Tabella 7: Parametri monitorati nel sito scelto B1-B2 e rispettivi unità di misura (UM), flusso di campionamento, metodi e tecniche analitiche, limiti di rilevabilità (LR) utilizzati.

PARAMETRO	UM	FLUSSO*	METODO ANALITICO	TECNICA ANALITICA	LR
Metano CH4	% v/v	non applicabile	MIP 15 IR	Gascromatografia	0,01
Anidride Carbonica CO2	% v/v	non applicabile	MIP 22 IR	Gascromatografia	0,01
Ossigeno O ₂	% v/v	non applicabile	MIP 20 EC	Gascromatografia	0,01
Idrogeno H ₂	% v/v	non applicabile	MIP 23 IR	Gascromatografia	0,01
Acido solfidrico H ₂ S	mg/Nm ³	non applicabile	MIP 24 EC	Gascromatografia	150
Ammoniaca NH ₃	Ammoniaca NH ₃ mg		M.U.632:84	Spettrofotometria- UV-FID	0,1
Polveri Totali Sospese PTS	veri Totali Sospese PTS mg appl		UNI EN 13284-1:2003	Gravimetria	0,01
Mercaptani	mg	0,2 l/min	MIP 11 PID	Fotoionizzatore	0,01
Sostanze organiche volatili mg 0,2 l/1		0,2 l/min	UNI EN 13649:2002	GC spettrometria di massa	0,01

4.1 RISULTATI DEL MONITORAGGIO DEL BIOGAS

Di seguito sono riportati in forma tabellare i risultati analitici del biogas captato e convogliato nell'area di trattamento (Tabella 8), durante le campagne di indagine mensili nel corso del 2016.

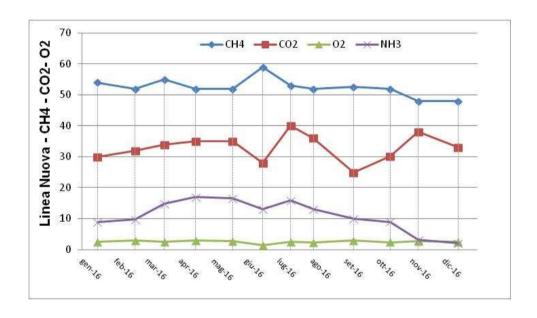
In Figura 5 vengono riportati i grafici rappresentativi delle concentrazioni dei parametri CH4, CO2, O2, NH3, registrate nel Biogas nel corso del 2016.

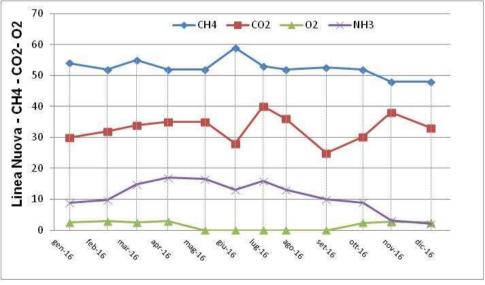
DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1 pag 31 di 110

Tabella 8: Risultati analitici del biogas captato rilevato durante le 12 campagne di monitoraggio nella <u>linea vecchia e nuova</u> e media calcolata per ciascun parametro nell'intero periodo di monitoraggio (gennaio - giugno 2016).

sito	parametri	15-gen- 16	19-feb- 16	17-mar- 16	15-apr- 16	19-mag- 16	16-giu- 16	12-lug- 16	2-ago- 16	8-set- 16	12-ott- 16	7-nov- 16	14-dic- 16	MEDIA
	Acido solfidrico (H2S) (mg/Nm3)	43	45	50	50	50	53	55	51	48,5	48	44	46	48,6
	Ammoniaca (mg/Nm3)	38	40	35	34.5	34,8	25	37	35	23	29	31	31	32,6
	Anidride carbonica (CO2) (% v/v)	7,1	6,9	5	3.5	3.5	2.3	2.6	2.8	3.8	3,1	3,2	2,8	4,7
	Idrogeno (H2)(% v/v)	0,07	0,1	0,19	0.25	0,31	0.25	0.25	0.2	0.17	0,15	0,18	0,15	0,16
Linea vecchia	Mercaptani (mg/Nm3)	< 150	< 150	<150	< 150	< 150	< 150	<150	< 150	< 150	< 150	< 150	< 150	< 150
	Metano (CH4) (% v/v)	8,7	8,5	13,5	13	9,5	9	10	8	<0.1	< 0.1	< 0.1	< 0.1	10,0
	Ossigeno (O2) (% v/v)	0,2	0,4	0,5	0.8	1,1	1	1.2	1.5	1.6	1,3	1,6	2	1,0
	Polveri totali (mg/Nm3)	< 0.1	< 0.1	<0,1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Sostanze organiche volatili - biogas (mg/Nm3)	510	642	553	485	312	267	219	195	163	111	93	87	303,1

Monitoraggio della Qualità dell'aria, Biogas e Percolato delle Acque dei Piezometri, delle Acque di Ruscellamento e del Sedimento del Fosso Casalta Discarica di CORINALDO (An) Report Annuale 2016_Rev1


EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 32 di 110


sito	parametri	15-gen- 16	19-feb- 16	17-mar- 16	15-apr- 16	19-mag- 16	16-giu- 16	12-lug- 16	2-ago- 16	8-set- 16	12-ott- 16	7-nov- 16	14-dic- 16	MEDIA
	Acido solfidrico (H2S) (mg/Nm3)	54	52	55	52	52	59	53	52	52,5	52	48	48	52,46
	Ammoniaca (mg/Nm3)	30	32	34	35	35	28	40	36	25	30,1	38	33	33,01
	Anidride carbonica (CO2) (% v/v)	2,6	2,9	2,5	3	2.8	1.5	2.6	2.3	2.9	2,4	2,7	2,6	2,67
	Idrogeno (H2)(% v/v)	0,09	0,08	0,13	0.2	0,22	0.2	0.23	0.21	0.18	0,15	0,16	0,12	0,14
Linea nuova	Mercaptani (mg/Nm3)	< 150	< 150	< 150	< 150	< 150	< 150	<150	< 150	< 150	< 150	< 150	< 150	< 150
	Metano (CH4) (% v/v)	8,8	9,7	14,9	17	16,5	13	16	13	10	9	3,1	2	11,1
	Ossigeno (O2) (% v/v)	0,4	0,4	0,7	1	1,4	1.2	1.3	1	1.2	1	1,3	1,8	1,0
	Polveri totali (mg/Nm3)	< 0.1	< 0.1	<0,1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Sostanze organiche volatili - biogas (mg/Nm3)	692	679,5	421	325	241	181	172	149	106	98	73	70	267,3

DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1 pag 33 di 110

Figura 5: Grafici rappresentativi dell'andamento delle concentrazioni dei parametri CH4, CO2, O2 registrate nel Biogas nel corso del 2016

ELLE ACQUE DI DSSO CASALTA RINALDO (AN) E 2016_REV1 pag 34 di 110

La composizione del biogas captato nella linea vecchia e in quella nuova mostra valori standard per miscele di gas generati da discariche di rifiuti assimilabili agli urbani.

Fra le 12 campagne di monitoraggio si osservano valori confrontabili in entrambe le linee vecchia e nuova, ad eccezione di valori lievemente più bassi di NH3 sulla linea vecchia soprattutto nella seconda parte del 2016, rispetto alla nuova e rispetto al resto del 2016.

Per le sostanze organiche volatili i valori più elevati sono riscontrati in entrambe le linee nella prima metà del 2016, rispetto alle concentrazioni determinate negli altri mesi.

In merito ad idrogeno ed anidride carbonica nel confronto fra linea vecchia e nuova non si osservano differenze significative.

Polveri, mercaptani ed Acido solforico risultano sempre inferiori al limite di rilevabilità.

Il contenuto di metano è elevato e quindi atto ad essere utilizzato per cogenerazione con valori mediamente registrati intorno a 50 % mol sia nella linea vecchia che nella linea nuova.

Rispetto alle campagne di indagine del 2015, i dati del 2016 risultano del tutto comparabili, con l'eccezione dei valori di NH3 che risultano mediamente superiori soprattutto nelle prima metà del 2016.

5. MONITORAGGIO DEL PERCOLATO

Le analisi sul percolato prodotto dai rifiuti sono eseguite per determinare l'evoluzione nel tempo della qualità del percolato stesso e per determinare lo stato dei processi di degradazione dei rifiuti.

Sino al novembre 2016 il monitoraggio è stato eseguito su n° due punti di prelievo del localizzati rispettivamente all'interno della vasca di raccolta di valle (PV1) e della vasca PV2 (Figura 1), nei quali sono stati prelevati campioni per la determinazione dei parametri chimico-fisici riportati in Tabella 9.

Dal dicembre 2016 il monitoraggio è proseguito con n. 2 punti di prelievo di cui CP1 ubicato nella vasca di raccolta di percolato dei vecchi lotti e CP2 in quella di raccolta di percolato dei nuovi lotti. Il punti CP1 corrisponde al vecchio punto dì prelievo PV1, mentre CP2 è nuovo (vedi planimetria fig. 2). Il protocollo analitico di monitoraggio resta invariato (tab. 9)

Tabella 9: Parametri monitorati nei 2 siti scelti (PV1, PV2) e rispettivi unità di misura (UM) e metodi analitici utilizzati.

PARAMETRO	UM	METODO ANALITICO
РН	-	CNR IRSA 1 Q64 Vol 3 1985
Conducibilità elettrica a 20°C	μS/cm	APAT CNR IRSA 2030 Man 29 2003
Temperatura	°C	ISTISAN 2007/31 ISS BBA 043
Ossidabilità	mg/L O ₂	ISTISAN 2007/31 ISS BBA 043
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	APHA Standard Methods 5210 D
Richiesta chimica di ossigeno (COD)	mg/L O ₂	APHA Standard Methods 5220 D
Carbonio organico totale (TOC)	mg/L C	UNI EN 1484:1999
Cloruri	mg/L	
Fluoruri	mg/L	APAT CNR IRSA 4020 Man 29 2003
Solfati	mg/L	
Azoto ammoniacale	mg/L NH4	APHA Standard Methods 4500 NH3 D
Azoto nitrico	mg/L N	APAT CNR IRSA 4020 Man 29 2003

pag 36 di 110

PARAMETRO	UM	METODO ANALITICO
Azoto nitroso	mg/L N	
Cianuri totali	mg/L	APAT CNR IRSA 4070 Man 29 2003
Cromo esavalente	mg/L	APAT CNR IRSA 3150C Man 29 2003
Arsenico	mg/L	
Cadmio	mg/L	
Cromo totale	mg/L	
Ferro	mg/L	
Manganese	mg/L	
Nichel	mg/L	
Piombo	mg/L	APHA Standard Methods 3120
Rame	mg/L	
Zinco	mg/L	
Sodio	mg/L	
Potassio	mg/L	
Calcio	mg/L	
Magnesio	mg/L	
Mercurio	mg/L	APAT CNR IRSA 3200A2 Man 29 2003
Solventi organici aromatici	mg/L	
Benzene	mg/L	
Toluene	mg/L	
Etilbenzene	mg/L	APHA Standard Methods 6200B
Xilene(m,p-)	mg/L	
Xilene(o-)	mg/L	
Stirene	mg/L	APHA Standard Methods 6200B
Solventi organici clorurati	mg/L	
Cloruro di vinile	mg/L	APAT CNR IRSA 5150 Man 29 2003
Solventi organici azotati	mg/L	EPA 8260C 2006

PARAMETRO	UM	METODO ANALITICO
Pesticidi fosforati	mg/L	EDA 0270D 2007
Pesticidi totali	mg/L	EPA 8270D 2007
Composti organoalogenati	mg/L	Metodo Kit Lange 390
Fenoli	mg/L	APAT CNR IRSA 5070 B Man 29 2003
Naftalene	mg/L	
Acenaftilene	mg/L	
Acenaftene	mg/L	
Fluorene	mg/L	
Fenantrene	mg/L	
Antracene	mg/L	
Fluorantene	mg/L	
Pirene	mg/L	EDA 0270D 2007
Benzo(a)antracene	mg/L	EPA 8270D 2007
Crisene	mg/L	
Benzo(b)fluorantene	mg/L	
Benzo(k)fluorantene	mg/L	
Benzo(a)pirene	mg/L	
Indeno(123cd)pirene	mg/L	
Dibenzo(ah)antracene	mg/L	
Bemzo(ghi)perilene	mg/L	

5.1 RISULTATI ANALISI DEL PERCOLATO

Di seguito sono riportati in forma tabellare (Tabella 10), i risultati analitici del percolato rilevato nelle 2 postazioni di misura (PV1 e PV2) durante le 11 campagne di monitoraggio mensili del periodo gennaio-novembre 2016.

In Tabella 11 sono riportati i risultati analitici del percolato rilevato nelle 2 nuove postazioni di misura CP1 (ex PV1) e CP2 di nuova realizzazione durante la campagna di monitoraggio mensili del dicembre 2016.

In Figura 6 vengono riportati i grafici dei parametri più significativi rilevati nel percolato nel corso del periodo gennaio-novembre 2016.

I dati del dicembre 2016 non sono graficabili in quanto rappresentano il 1° monitoraggio di una nuova serie di report analitici.

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 39 di 110

Tabella 10: Risultati analitici rilevati nelle 2 postazioni di misura (PV1 e PV2) durante le 11campagne di gennaio-novembre 2016

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	рН ()	8,14	7,5	7,9	8	7,9	7,9	8,1	8,1	8	8,4	8,1	7,95
	Conducibilità (μS/cm)	18170	14860	17900	19730	18500	19900	20200	21500	15300	23600	26700	18451,11
	Temperatura (°C)	16	15,5	16	-	16	16	-	-	-	-	-	15,90
	Ossidabilità al permanganato (Sostanze organiche) (mg/l O2)	2200	-	-	-	2500	2700	-	-	-	-	-	2466,67
	Richiesta biochimica di ossigeno (BOD5) (mg/l O2)	2450	1550	2580	3660	2100	2654	2620	2580	2300	2650	2850	2544,91
	Richiesta chimica di ossigeno (COD) (mg/I O2)	3600	2500	3600	5300	4800	5100	4100	3800	3700	5700	7200	4490,91
vasca PV1	Carbonio organico totale (TOC) (mg/l C)	3200	1730	980	1500	1800	2000	1650	1670	1900	2210	2100	1885,45
	Cloruri (mg/l)	2015	1130	1883	2695	2330	2950	2818	2070	2714	2920	3347	2442,91
	Fluoruri (mg/l)	< 0,03	< 0,03	<0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
	Solfati (mg/l)	570	460	780	2695	310	190	320	370	60	330	330	583,18
	Azoto Ammoniacale (mg/l NH4)	1760	1600	1890	3650	2650	2950	3140	2650	2370	3630	3950	2749,09
	Azoto nitrico (mg/l N)	<0,02	<0,02	<0,02	1,5	1,8	<0,2	< 0,02	< 0,02	0,68	1,2	4,5	1,94
	Azoto nitroso (mg/l N)	< 0,004	< 0,004	<0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 40 di 110

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Cianuri totali (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Cromo esavalente (mg/l)	< 0,001	< 0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
	Arsenico (mg/l)	0,2	0,08	0,18	0,15	0,24	0,08	0,097	0,038	0,14	0,08	0,16	0,13
	Cadmio (mg/l)	< 0,002	< 0,002	<0,002	< 0,002	< 0,002	0,06	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	0,06
	Cromo totale (mg/l)	0,2	0,3	0,92	0,34	0,99	1,9	1,8	0,84	1,5	1,2	1,6	1,05
	Ferro (mg/l)	34	1,7	3,6	2,2	6,1	4,8	6,7	13	4,2	4,3	8,1	8,06
	Manganese (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Nichel (mg/l)	< 0,05	0,18	< 0,05	< 0,05	< 0,05	< 0,05	0,35	0,19	< 0,05	< 0,05	0,08	0,20
	Piombo (mg/l)	0,8	0,02	0,06	0,42	0,75	0,54	0,2	6,1	< 0,02	< 0,02	< 0,02	1,11
	Rame (mg/l)	< 0,02	< 0,02	<0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	0,22	0,22
	Zinco (mg/l)	2	0,18	1,7	< 0,02	3,4	0,2	2,6	1,6	0,98	< 0,02	1,1	1,53
	Sodio (mg/l)	2080	1692	1760	2388	1073	2350	2234	2360	2580	2860	3360	2248,82
	Potassio (mg/l)	810	800	920	1200	420	1300	1200	1200	1200	1200	1500	1068,18
	Calcio (mg/l)	210	110	120	51	150	52	580	60	64	39	78	137,64

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 41 di 110

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Magnesio (mg/l)	98	95	110	99	82	96	160	130	110	91	110	107,36
	Mercurio (mg/l)	< 0,001	< 0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
	Solventi organici aromatici (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Benzene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Toluene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Etilbenzene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Xilene (m,p-) (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Xilene (o-) (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Stirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Composti organici clorurati totali (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Cloruro di vinile (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	AOX - Composti Organo Alogenati (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Solventi Organici Azotati (mg/l)	< 0,01	< 0,01	<0,015	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Pesticidi fosforati (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 42 di 110

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Pesticidi totali (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fenoli (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	0,11	17	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	8,56
	Naftalene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Acenaftilene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Acenaftene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fluorene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fenantrene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Antracene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fluorantene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Pirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(a)antracene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Crisene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(b)Fluorantene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(k)Fluorantene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Benzo(a)pirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	indeno(123cd)pirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Dibenzo(a,h)antracene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(ghi)perilene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	pH ()	8,16	7,5	7,9	7,9	7,9	7,9	8,2	8,1	8,1	8,4	8,1	8,01
	Conducibilità (μS/cm)	18150	14960	17700	20900	18800	20000	19600	21600	15600	23800	26300	19764,55
	Temperatura (°C)	16	16	15,5	-	16	16	-	-	-	-	-	15,90
	Ossidabilità al permanganato (Sostanze organiche) (mg/l O2)	2100	-	-	-	2700	3000	-	-	-	-	-	2600,00
vasca	Richiesta biochimica di ossigeno (BOD5) (mg/l O2)	2300	1400	2850	3850	2314	2841	2540	2660	2450	2500	2750	2586,82
PV2	Richiesta chimica di ossigeno (COD) (mg/I O2)	3500	2300	3700	5400	4800	5200	4000	3900	3700	5700	7200	4490,91
	Carbonio organico totale (TOC) (mg/I C)	2800	1740	1000	1350	1720	2100	1550	1680	2000	1770	2200	1810,00
	Cloruri (mg/l)	2063	1198	1850	2778	2120	2110	2800	2090	3027	2843	3310	2380,82
	Fluoruri (mg/l)	< 0,03	< 0,03	<0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03	< 0,03
	Solfati (mg/l)	580	480	580	260	290	200	320	380	81	290	320	572,64

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 44 di 110

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Azoto Ammoniacale (mg/l NH4)	1750	16500	2070	3730	2710	2900	3020	2700	2100	3690	4020	4108,18
	Azoto nitrico (mg/l N)	<0,02	<0,02	<0,02	1,6	2	<0,02	< 0,02	< 0,02	0,56	1,6	4,3	2,01
	Azoto nitroso (mg/l N)	< 0,004	< 0,004	<0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004
	Cianuri totali (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Cromo esavalente (mg/l)	< 0,001	< 0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
	Arsenico (mg/l)	<0,01	< 0,01	0,18	0,15	< 0,01	0,08	0,12	0,041	0,08	0,08	0,24	0,12
	Cadmio (mg/l)	< 0,002	< 0,002	<0,002	< 0,002	< 0,002	0,06	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002	< 0,002
	Cromo totale (mg/l)	<0,1	0,28	0,82	0,36	1	1,5	2,2	0,56	1,3	1,4	1,3	1,07
	Ferro (mg/l)	6	1,8	2,3	1,7	2,1	4,7	9,7	5,2	5	4,1	7,6	4,56
	Manganese (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Nichel (mg/l)	< 0,05	< 0,05	0,1	< 0,05	< 0,05	< 0,05	0,34	0,17	< 0,05	< 0,05	< 0,05	0,20
	Piombo (mg/l)	1,1	< 0,02	0,08	0,29	0,72	0,56	0,23	< 0,02	< 0,02	< 0,02	< 0,02	0,50
	Rame (mg/l)	< 0,02	< 0,02	<0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
	Zinco (mg/l)	1,9	0,1	1,6	< 0,02	2	0,08	0,56	2,2	1,1	< 0,02	0,16	1,08

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 45 di 110

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Sodio (mg/l)	2057	1462	1692	2418	1053	2420	2342	2350	3140	2660	3200	2254,00
	Potassio (mg/l)	840	710	890	1200	410	1300	1200	1200	1400	1100	1500	1068,18
	Calcio (mg/l)	170	100	120	48	110	3,3	480	65	65	39	68	115,30
	Magnesio (mg/l)	100	91	100	91	78	96	150	140	110	89	110	105,00
	Mercurio (mg/l)	< 0,001	< 0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
	Solventi organici aromatici (mg/l)	< 0,05	< 0,05	<0,005	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Benzene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Toluene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Etilbenzene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Xilene (m,p-) (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Xilene (o-) (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Stirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Composti organici clorurati totali (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Cloruro di vinile (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 46 di 110

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	AOX - Composti Organo Alogenati (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
	Solventi Organici Azotati (mg/l)	< 0,01	< 0,01	<0,015	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Pesticidi fosforati (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Pesticidi totali (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fenoli (mg/l)	< 0,05	< 0,05	<0,05	< 0,05	0,19	0,11	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	0,15
	Naftalene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Acenaftilene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Acenaftene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fluorene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fenantrene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Antracene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Fluorantene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Pirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(a)antracene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01

DEI PIEZOMETRI, TOSSO CASALTA RINALDO (AN) LE 2016_REV1	A SOUTH A SOUT
	CLOGICE
pag 47 di 110	

sito	parametri	gen-16	feb-16	mar-16	apr-16	mag-16	giu-16	lug-16	ago-16	set-16	ott-16	nov-16	Media
	Crisene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(b)Fluorantene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(k)Fluorantene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(a)pirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	indeno(123cd)pirene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Dibenzo(a,h)antracene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01
	Benzo(ghi)perilene (mg/l)	< 0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01

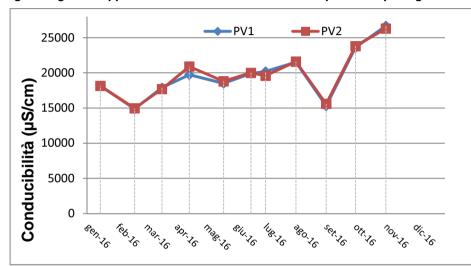
Tabella 11: Risultati analitici rilevati nelle 2 postazioni di misura (CP1 e CP2) durante la campagne di dicembre 2016

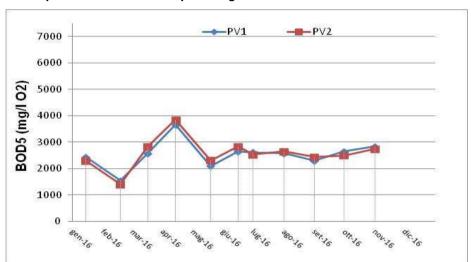
PARAMETRI	vasca CP1 (EX PV1)	vasca CP2
pH ()	8,10	8
Conducibilità (μS/cm)	25500	25400
Temperatura (°C)	-	-
Ossidabilità al permanganato (Sostanze organiche) (mg/l O2)	-	-
Richiesta biochimica di ossigeno (BOD5) (mg/l O2)	2860	2700
Richiesta chimica di ossigeno (COD) (mg/l O2)	7000	6700
Carbonio organico totale (TOC) (mg/l C)	1850	1620
Cloruri (mg/l)	3150	3100
Fluoruri (mg/l)	< 0.03	< 0.03
Solfati (mg/l)	300	290
Azoto Ammoniacale (mg/l NH4)	3700	3730
Azoto nitrico (mg/l N)	3,8	3,6
Azoto nitroso (mg/l N)	< 0.004	< 0.004
Cianuri totali (mg/l)	< 0.05	< 0.05
Cromo esavalente (mg/l)	< 0.001	< 0.001
Arsenico (mg/l)	0,14	0,1
Cadmio (mg/l)	< 0.002	< 0.002
Cromo totale (mg/l)	1,2	0,98
Ferro (mg/l)	4,5	1,5
Manganese (mg/l)	< 0.05	< 0.05

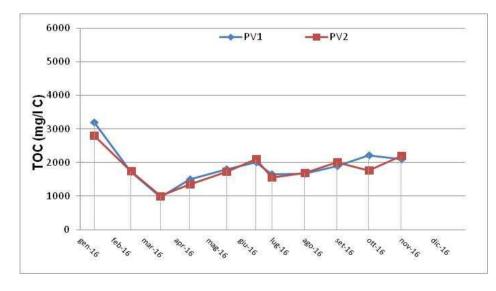
S E PERCOLATO

JSCELLAMENTO
OSSO CASALTA
RINALDO (AN)
LE 2016_REV1
pag 49 di 110

PARAMETRI	vasca CP1 (EX PV1)	vasca CP2
Nichel (mg/l)	< 0.05	< 0.05
Piombo (mg/l)	< 0.02	< 0.02
Rame (mg/l)	< 0.02	< 0.02
Zinco (mg/l)	0,44	0,5
Sodio (mg/l)	2600	3000
Potassio (mg/l)	1200	690
Calcio (mg/l)	57	99
Magnesio (mg/l)	100	120
Mercurio (mg/l)	< 0.001	< 0.001
Solventi organici aromatici (mg/l)	< 0.05	< 0.05
Benzene (mg/l)	< 0.01	< 0.01
Toluene (mg/l)	< 0.01	< 0.01
Etilbenzene (mg/l)	< 0.01	< 0.01
Xilene (m,p-) (mg/l)	< 0.01	< 0.01
Xilene (o-) (mg/l)	< 0.01	< 0.01
Stirene (mg/l)	< 0.01	< 0.01
Composti organici clorurati totali (mg/l)	< 0.05	< 0.05
Cloruro di vinile (mg/l)	< 0.01	< 0.01
AOX - Composti Organo Alogenati (mg/l)	< 0.05	< 0.05
Solventi Organici Azotati (mg/l)	< 0.01	< 0.01
Pesticidi fosforati (mg/l)	< 0.01	< 0.01
Pesticidi totali (mg/l)	< 0.01	< 0.01




PARAMETRI	vasca CP1 (EX PV1)	vasca CP2
Fenoli (mg/l)	< 0.05	< 0.05
Naftalene (mg/l)	< 0.01	< 0.01
Acenaftilene (mg/l)	< 0.01	< 0.01
Acenaftene (mg/l)	< 0.01	< 0.01
Fluorene (mg/l)	< 0.01	< 0.01
Fenantrene (mg/l)	< 0.01	< 0.01
Antracene (mg/l)	< 0.01	< 0.01
Fluorantene (mg/l)	< 0.01	< 0.01
Pirene (mg/l)	< 0.01	< 0.01
Benzo(a)antracene (mg/l)	< 0.01	< 0.01
Crisene (mg/l)	< 0.01	< 0.01
Benzo(b)Fluorantene (mg/l)	< 0.01	< 0.01
Benzo(k)Fluorantene (mg/l)	< 0.01	< 0.01
Benzo(a)pirene (mg/l)	< 0.01	< 0.01
indeno(123cd)pirene (mg/l)	< 0.01	< 0.01
Dibenzo(a,h)antracene (mg/l)	< 0.01	< 0.01
Benzo(ghi)perilene (mg/l)	< 0.01	< 0.01


DISCARICA DI CORINALDO (AN)
REPORT ANNUALE 2016_REV1
pag 51 di 110

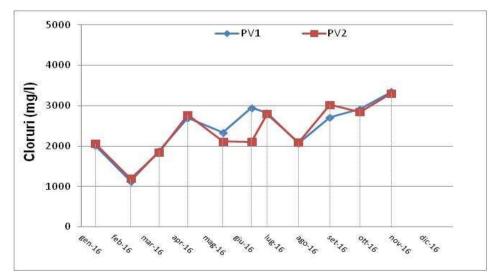
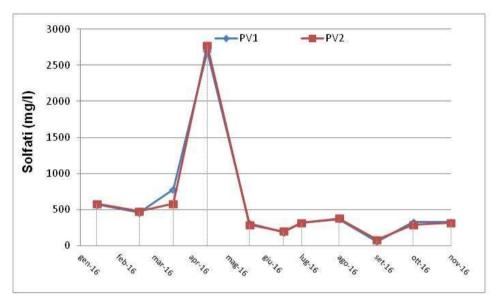
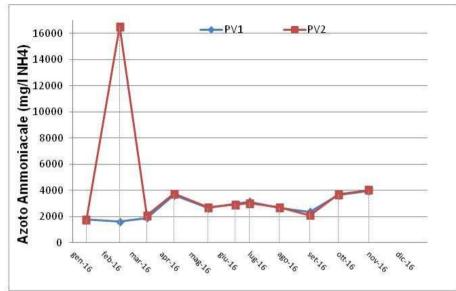
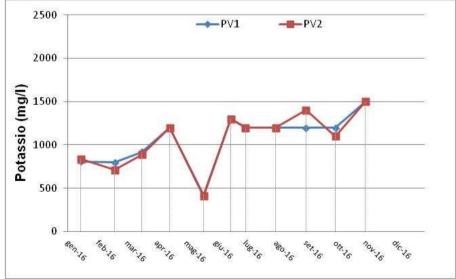


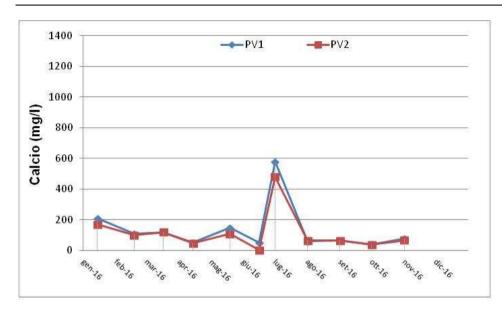
Figura 6: grafici rappresentativi delle concentrazioni dei parametri più significativi rilevati nel percolato nel corso del periodo gennaio-novembre 2016.

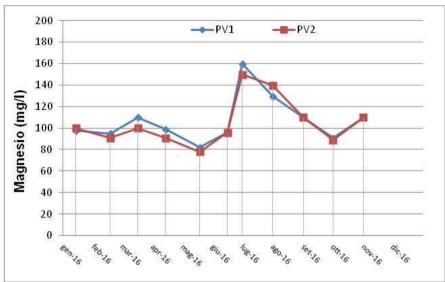


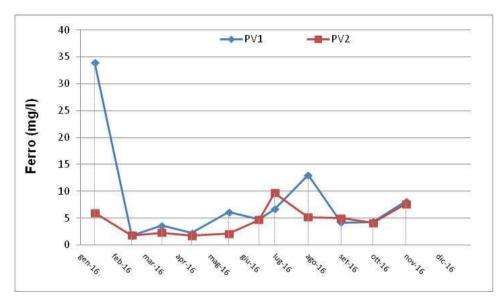




REPORT ANNUALE 2016 REV1 pag 52 di 110







REPORT ANNUALE 2016_REV1 pag 53 di 110

DI COGLER

pag 54 di 110

Le concentrazioni di cadmio, cromo esavalente, piombo, manganese, nichel, rame, mercurio, idrocarburi policiclici aromatici, solventi organici, composti organoalogenati, cloruro di vinile e pesticidi sono risultate sempre inferiori o prossimi al limite di rilevabilità.

Per l'azoto nitrico e nitroso i valori sono inferiori o uguali al rispettivo limite di rilevabilità in entrambi i siti.

Per quanto riguarda il BOD5 dal confronto fra le 11 campagne di monitoraggio mensile del 2016 si osservano valori simili in entrambi i siti PV1 e PV2, con valori mediamente inferiori rispetto al corrispondente periodo del 2015 per entrambi i punti di prelievo.

Relativamente al ferro si registrano valori simili in entrambi i siti PV1 e PV2, con valori mediamente inferiori rispetto al 2015 per entrambi i punti di prelievo, a parte un picco registrato nel gennaio 2016 sul punto PV1.

Relativamente al Carbonio organico totale i valori registrati nel 2016 sono mediamente inferiori rispetto ai dati registrati nel 2015.

I dati di conducibilità del 2016 risultano mediamente inferiori rispetto al 2015.

I dati di cloruri e solfati del 2016 rientrano nella variabilità dei parametri determinata nel corso del 2015, ad eccezione dì un picco registrato in entrambi i campioni nell'aprile 2016.

I dati relativi all'azoto ammoniacale del 2016 risultano in linea rispetta a quanto determinato nel 2015, tranne che per un unico picco registrato nel campione PV2 nel febbraio 2016.

I risultati relativi a calcio, sodio, potassio e magnesio sono mediamente confrontabili con i dati del 2015.

6. MONITORAGGIO DELLE ACQUE SUB-SUPERFICIALI E DI IPREGNAZIONE

Il monitoraggio delle acque prelevate all'interno dei piezometri, definite *acque sub-superficiale* e *di impregnazione*, anche in base all'AIA n. 106 rilasciata, viene effettuato per controllare lo stato ambientale delle stesse attraverso il confronto con le CSC (Concentrazioni Soglia di Contaminazione) per le acque sotterranee definite dal D.Lgs. 152/06 tab. 2 alla parte IV, Titolo V e con i "*valori di fondo naturale*" definiti da ARPAM attraverso lo studio commissionato dal Comune di Corinaldo.

Complessivamente sino al dicembre 2015 erano presenti nº 11 punti di prelievo S1, S2, S3, S4, S5, SA1, SA2, SA3, SA4, SA5 ed SA6, che a seguito dei lavori di ampliamento della discarica sono gradualmente stati ridotti e sostituiti da nuovi piezometri.

Tali piezometri, individuati in fig. 1 ed alla planimetria allegata sono interessati dal monitoraggio trimestrale delle acque per la determinazione dei parametri chimico-fisici riportati in Tabella 12.

Tabella 12: Parametri monitorati nei piezometri (S1, S2, S3, S4, S5, SA1, SA2, SA3, SA4, SA5, SA6) e rispettivi unità di misura (UM), metodi e tecniche analitiche, limiti di rivelabilità (LR) utilizzati e riferimenti normativi.

PARAMETRO	ИМ	METODO ANALITICO	RIFERIMENTI NORMATIVI
Livello piezometrico da p.c.	m	-	-
РН	-	APAT CNR IRSA 2060 Man 29 2003	
Conducibilità elettrica a 20°C	μS/cm	APAT CNR IRSA 2000 Man 29 2003	
Temperatura	°C	ISTISAN 2007/31 ISS BBA 043	
Ossidabilità	mg/L O ₂	ISTISAN 2007/31 ISS BEB 027	
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	APHA Standard Methods 5210 D	
Carbonio organico totale (TOC)	mg/L C	UNI EN 1484:1999	
Cloruri	mg/L	APAT CNR IRSA 4020 Man 29 2003	
Fluoruri	μg/L	ADAT CND IDSA 4020 Man 20 2002	D.Lgs 152/2006. All.5 - Tab.2
Solfati	mg/L	APAT CNR IRSA 4020 Man 29 2003	D.Lgs 152/2006. All.5 - Tab.2

Azoto ammoniacale	mg/L NH4	APHA Standard Methods 4500 NH3 D	
Azoto nitrico	mg/L N		
Azoto nitroso	mg/L N	APAT CNR IRSA 4020 Man 29 2003	
Cianuri liberi	μg/L	APHA Standard Methods 4500 CN	D.Lgs 152/2006. All.5 - Tab.2
Cromo esavalente	μg/L	APAT CNR IRSA 3150C Man 29 2003	D.Lgs 152/2006. All.5 - Tab.2
Arsenico	μg/L		
Cadmio	μg/L		
Cromo totale	μg/L		
Ferro	μg/L		
Manganese	μg/L	APHA Standard Methods 3125 B	D.Lgs 152/2006. All.5 - Tab.2
Nichel	μg/L		
Piombo	μg/L		
Rame	μg/L		
Zinco	μg/L		
Sodio	mg/L		
Potassio	mg/L	APHA Standard Methods 3120 B	
Calcio	mg/L		
Magnesio	mg/L		
Mercurio	μg/L	APHA Standard Methods 3125 B	D.Lgs 152/2006. All.5 - Tab.2
Benzene	μg/L		
Toluene	μg/L		
Etilbenzene	μg/L	APHA Standard Methods 6200B	D.Lgs 152/2006 All.5 -
Xilene (m,p-)	μg/L	APHA Standard Methods 6200B	Tab.2.
Xilene (o-)	μg/L		
Stirene	μg/L		
Clorometano	μg/L		
1,1-Dicloroetilene	μg/L		
Cloruro di vinile	μg/L		D.Lgs 152/2006 All.5 -

Cloroformio	μg/L	APHA Standard Methods 6200B	Tab.2.
1,2-Dicloroetano	μg/L		
Tricloroetilene	μg/L		
Tetracloroetilene	μg/L		D.Lgs 152/2006 All.5 -
Esaclorobutadiene	μg/L		Tab.2.
Sommatoria organoalogenati	μg/L	APHA Standard Methods 6200B	
1,2-Dicloroetilene	μg/L		
1,1-Dicloroetano	μg/L		
1,2-Dicloropropano	μg/L		
1,1,2-Tricloroetano	μg/L		
1,1,2,2-Tetracloroetano	μg/L		
1,2,3-Tricloropropano	μg/L		
Composti organoalogenati	μg/L	APHA Standard Methods 6200B	
Naftalene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Acenaftilene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Acenaftene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fluorene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fenantrene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Antracene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fluorantene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Pirene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Benzo(a)antracene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Crisene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Benzo(b)fluorantene (A)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Benzo(k)fluorantene (B)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Benzo(a)pirene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Indeno(123cd)pirene (D)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Dibenzo(ah)antracene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.

Benzo(ghi)perilene (C)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 - Tab.2.
Somm. Policiclici aromatici (A.B.C.D)	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fenoli	mg/L	APAT CNR IRSA 5070 A Man 29 2003	
Solventi organici azotati	μg/L	EPA 8270D 2007	
Pesticidi fosforati	μg/L	EPA 8270D 2007	
Pesticidi totali	μg/L	EPA 8270D 2007	

6.1 RISULTATI ANALISI DELLE ACQUE SUB-SUPERFICIALI E DI IMPREGNAZIONE

Di seguito sono riportati in forma tabellare (tabella 13) i risultati analitici rilevati negli 11 punti di monitoraggio delle acque dei piezometri S1, S2, S3, S4, S5, SA1, SA2, SA3, SA4, SA5 ed SA6 campionate sino al settembre 2016.

A seguito dei lavori di ampliamento della discarica nel corso del 2016 si fa presente che:

- Nella campagna di marzo non è stato possibile campionare i piezometri S3, S5 e SA6 perché inaccessibili;
- Nella campagna di giugno 2016 non è stato possibile campionare i piezometri S3, S4, S5, SA5 e SA6 poiché inaccessibili;
- Nella campagna di settembre 2016 risultavano accessibili solo 4 piezometri SA1,
 S2, SA2, SP1, poiché gli altri non erano più esistenti.

pag 59 di 110

Tabella 13: Risultati analitici rilevati nei piezometri (S1, S2, S3, S4, S5, SA1, SA2, SA3, SA4, SA5, SA6). UM = Unità di Misura.

MARZO 2016														
PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Livello piezometrico da p.c.	m	2,42	1,9	1,8	0,6		2,75		2,4		0,5			
PH	-	7,7	7,56	7,41	7,81		7,64	7,62	7,16		7,72			
Conducibilità elettrica a 20℃	μS/cm	3460	1610	7810	4110		2430	7170	5460		2840			
Temperatura	C	14,6	14,5	15	14		14,6	14,5	14,8		14,2			
Ossidabilità		17,3	22,3	26,1	20,1		9,7	21	52,1		16,1			
Richiesta biochimica di ossigeno (BOD5)		10	8	10	5		< 5	8	15		5			
Carbonio organico totale (TOC)	mg/L C	7	5	10	10		4	10	10		7			
Cloruri	mg/L	33	14	120	51		45	94	14		17			
Fluoruri	μg/L	< 30	< 30	< 30	< 30		< 30	< 30	< 30		< 30		1500	
Solfati	mg/L	120	56	70	140		330	240	90		35		250	2340
Azoto ammoniacale	mg/L NH4	< 0.05	< 0.05	2,38	0,496		< 0.05	< 0.05	0,354		< 0.05			
Azoto nitrico	mg/L N	0,2	0,2	0,16	0,68		0,2	0,68	0,22		0,17			
Azoto nitroso	mg/L N	< 0.004	< 0.004	< 0.004	< 0.004		< 0.004	0,24	0,12		0,12			
Cianuri liberi	μg/L	< 4	< 4	< 4	< 4		< 4	< 4	< 4		< 4		50	

REPORT ANNUALE 2016_REV1 pag 60 di 110

MARZO 2016

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Cromo esavalente	μg/L	< 1	< 1	< 1	< 1		< 1	< 1	< 1		< 1		5	
Arsenico	μg/L	0,45	0,3	1,1	0,63		0,33	1,1	0,74		0,74		10	
Cadmio	μg/L	< 0.3	< 0.3	< 0.3	< 0.3		< 0.3	< 0.3	< 0.3		< 0.3		5	
Cromo totale	μg/L	< 2	< 2	< 2	< 2		< 2	< 2	< 2		< 2		50	
Ferro	μg/L	< 5	5,4	140	13		8,7	8,6	120		13		200	1010
Manganese	μg/L	< 2	< 2	320	67		83	37	1700		180		50	907,5
Nichel	μg/L	4	8	14	20		9	16	29		22		20	24,39
Piombo	μg/L	< 0.3	< 0.3	0,45	< 0.3		< 0.3	< 0.3	< 0.3		< 0.3		10	
Rame	μg/L	6,7	5,9	2,8	10		5,2	5,4	6,3		7,5		1000	
Zinco	μg/L	< 5	< 5	51	< 5		< 5	410	58		5,2		3000	
Sodio	mg/L	500	100	1100	620		230	1100	830		260			
Potassio	mg/L	7,7	21	65	59		23	69	72		56			
Calcio	mg/L	97	160	120	150		220	140	220		240			
Magnesio	mg/L	110	59	140	130		96	150	210		140			
Mercurio	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		1	

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 61 di 110

MAR70 2016

UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
μg/L	<0,1	<0,1	<0,1	<0,1		<0,1	<0,1	<0,1		<0,1			
μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		1	
μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		15	
μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		50	
μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		10	
	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		10	
		< 0.1						< 0.1					
												-	
												1.5	
												·	
	µg/L µg/L µg/L	ру/L <0.1 ру/L <0.01 ру/L <0.01 ру/L <0.1 ру/L <0.1 ру/L <0.1 ру/L <0.1 ру/L <0.1 ру/L <0.1	ру/L <0,1 <0,1 ру/L <0.1 <0.1	ру/L	ру/L	ру/L	ру/L <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 pg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	ру/L <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	ру/L <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	μg/L <0,1	μg/L <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	μg/L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	UM S1 SA2 S2 SA1 S3 SA3 S4 SA4 S5 SA5 SA6 152/2006. μg/L < 0.1

REPORT ANNUALE 2016_REV1 pag 62 di 110

MARZO 2016

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Esaclorobutadiene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		0,15	
1,2-Dicloroetilene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		60	
1,1-Dicloroetano	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01		810	
1,2-Dicloropropano	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		0,15	
1,1,2-Tricloroetano	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		0,2	
1,1,2,2-Tetracloroetano	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01		0,05	
1,2,3-Tricloropropano	μg/L	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001		< 0.001		0,001	
Composti organoalogenati	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Naftalene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Acenaftilene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Acenaftene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Fluorene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Fenantrene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Antracene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			
Fluorantene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1			

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 63 di 110

MARZO 2016

	1		T				·					<u> </u>	Valori fondo
UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	naturale ARPAM
μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1		< 0.1		50	
	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01		0,1	
								< 0.1					
												·	
												·	
												0,1	
				,						,			
	UМ	ру/L < 0.1 ру/L < 0.01 ру/L < 0.01 ру/L < 0.01 ру/L < 0.005 ру/L < 0.001 ру/L < 0.005 ру/L < 0.005 ру/L < 0.005	ру/L < 0.1 < 0.1 ру/L < 0.01 < 0.01 ру/L < 0.01 < 0.01 ру/L < 0.01 < 0.01 ру/L < 0.005 < 0.005 ру/L < 0.001 < 0.001 ру/L < 0.005 < 0.005 ру/L < 10 < 10 ру/L < 0.005 < 0.005	ру/L < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 ру/L < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 ру/L < 0.005 < 0.005 < 0.005 ру/L < 0.001 < 0.001 < 0.001 ру/L < 0.01 < 0.001 < 0.001 ру/L < 0.01 < 0.01 < 0.001 ру/L < 0.05 ру/L < 0.05 ру/L < 0.005 < 0.005 < 0.005 < 0.005	ру/L < 0.1 < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 < 0.01 ру/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 < 0.01 ру/L < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 ру/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 ру/L < 0.05 ру/L < 0.05 ру/L < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	ру/L < 0.1 < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 < 0.01 ру/L < 0.1 < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 < 0.01 ру/L < 0.005 < 0.005 < 0.005 < 0.005 ру/L < 0.001 < 0.001 < 0.001 < 0.001 ру/L < 0.01 < 0.01 < 0.01 < 0.001 ру/L < 0.05 ру/L < 0.05 ру/L < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	μg/L < 0.1	μg/L < 0.1	ру/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	ру/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 ру/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 ру/L < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 ру/L < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.	ру/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	ру/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	μg/L < 0.1

D DELLE ACQUE DEI PIEZOMETRI, BEDIMENTO DEL FOSSO CASALTA DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1 pag 64 di 110

													D.Lgs	Valori fondo naturale
PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	152/2006.	ARPAM
Livello piezometrico da p.c.	m	2,4	1,76	1,76	1,2		3,24		4,26					
PH	-	7,41	7,25	8,08	7,12		7,15		7					
Conducibilità elettrica a 20℃	μS/cm	9000	1480	670	2110		1970		7000					
Temperatura	င	16	16	16	16		16		16					
Ossidabilità		9,2	8,9	9,6	8,4		9,6		9					
Richiesta biochimica di ossigeno (BOD5)		< 5	< 5	< 5	< 5		< 5		< 5					
Carbonio organico totale (TOC)	mg/L C	14	6	6	16		6		100					
Cloruri	mg/L	1800	63	95	220		110		810					
Fluoruri	μg/L	100	300	< 30	280		240		200				1500	
Solfati	mg/L	2747	550	1548	660		850		2600				250	2340
Azoto ammoniacale	mg/L NH4	1,03	< 0.05	< 0.05	0,081		< 0.05		1,77					
Azoto nitrico	mg/L N	0,35	0,98	0,36	2,7		0,31		0,27					
Azoto nitroso	mg/L N	< 0.004	< 0.004	< 0.004	< 0.004		< 0.004		< 0.004					
Cianuri liberi	μg/L	< 4	< 4	< 4	< 4		< 4		< 4				50	

REPORT ANNUALE 2016_REV1 pag 65 di 110

PARAMETRO	UM	S1	SA2	S 2	SA1	S3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Cromo esavalente	μg/L	< 1	< 1	< 1	< 1		< 1		< 1				5	
Arsenico	μg/L	1,3	< 0.3	0,44	0,37		< 0.3		1,2				10	
Cadmio	μg/L	< 0.3	< 0.3	< 0.3	< 0.3		< 0.3		< 0.3				5	
Cromo totale	μg/L	< 2	< 2	< 2	< 2		< 2		< 2				50	
Ferro	μg/L	20	49	33	180		44		2000				200	1010
Manganese	μg/L	800	34	50	89		170		1400				50	907,5
Nichel	μg/L	30	8,4	5,3	16		6,9		22				20	24,39
Piombo	μg/L	0,42	< 0.3	< 0.3	0,68		< 0.3		< 0.3				10	,
Rame	μg/L	4,6	4,2	3,7	17		4		7,8				1000	
Zinco	μg/L	370	< 5	8,9	24		6,8		< 5				3000	
Sodio	mg/L	1400	120	720	250		220		1100				0000	
Potassio	mg/L	72	21	10	38		25		56					
Calcio	mg/L	220	200	110	89		210		260					
Magnesio	mg/L	270	67	140	49		89		270					

REPORT ANNUALE 2016_REV1 pag 66 di 110

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Mercurio	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				1	
Solventi organici aromatici	μg/L	< 0,1	< 0,1	< 0,1	< 0,1		< 0,1		< 0,1					
Benzene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				1	
Toluene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				15	
Etilbenzene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				50	
Xilene (m,p-)	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				10	
Xilene (o-)	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				10	
Stirene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				25	
Solventi organici clorurati	μg/L	< 0,01	< 0,01	< 0,01	< 0,01		< 0,01		< 0,01					
Clorometano	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				1,5	
1,1-Dicloroetilene	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,05	
Cloruro di vinile	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				0,5	
Cloroformio	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,15	
1,2-Dicloroetano	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				3	

REPORT ANNUALE 2016_REV1 pag 67 di 110

PARAMETRO	UM	S1	SA2	S2	SA1	S 3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Tricloroetilene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				1,5	
Tetracloroetilene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				1,1	
Esaclorobutadiene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				0,15	
1,2-Dicloroetilene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				60	
1,1-Dicloroetano	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				810	
1,2-Dicloropropano	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				0,15	
1,1,2-Tricloroetano	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				0,2	
1,1,2,2-Tetracloroetano	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,05	
1,2,3-Tricloropropano	μg/L	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001		< 0.001				0,001	
Composti organoalogenati	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Naftalene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Acenaftilene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Acenaftene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Fluorene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 68 di 110

PARAMETRO	UM	S1	SA2	S2	SA1	 S3	SA3	 S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Fenantrene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Antracene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Fluorantene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1					
Pirene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				50	
Benzo(a)antracene	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,1	
Crisene	μg/L	< 0.1	< 0.1	< 0.1	< 0.1		< 0.1		< 0.1				5	
Benzo(b)fluorantene (A)	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,1	
Benzo(k)fluorantene (B)	μg/L	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005		< 0.005				0,05	
Benzo(ghi)perilene (C)	μg/L	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001		< 0.001				0,01	
Benzo(a)pirene	μg/L	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001		< 0.001				0,01	
Indeno(123cd)pirene (D)	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,1	
Dibenzo(ah)antracene	μg/L	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001		< 0.001				0,01	
Somm. Policiclici aromatici (A.B.C.D)	μg/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01				0,1	
Fenoli	mg/L	< 0.05	< 0.05	< 0.05	< 0.05		< 0.05		< 0.05					

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 69 di 110

GIUGNO 2016														
PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Solventi organici azotati	μg/L	< 10	< 10	< 10	< 10		< 10		< 10					
Pesticidi fosforati	μg/L	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005		< 0.005					
Pesticidi totali	ug/L	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		< 0.01					

SETTEMBRE 2016														
PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Livello piezometrico da p.c.	m	2,4	3,51	4,84	4,38									
PH	-	7,59	7,26	7,41	7,53									
Conducibilità elettrica a 20℃	μS/cm	6200	1850	2960	5300									
Temperatura	C	14	14	14,1	14									
Ossidabilità		34,2	38,3	31,2	37,7									
Richiesta biochimica di ossigeno (BOD5)		13	15	12	15									
Carbonio organico totale (TOC)	mg/L C	5	8	12	11									

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 70 di 110

SETTEMBRE 2016

OLITEMBIL 2010														
PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Cloruri	mg/L	790	100	270	700									
Fluoruri	μg/L	< 30	< 30	< 30	< 30								1500	
Solfati	mg/L	2284	620	860	1500	_	_	_		_			250	2340
Azoto ammoniacale	mg/L NH4	< 0.05	0,164	0,544	2,91									
Azoto nitrico	mg/L N	0,072	0,3	0,22	1									
Azoto nitroso	mg/L N	< 0.004	< 0.004	0,06	0,03									
Cianuri liberi	μg/L	< 4	< 4	< 4	< 4								50	
Cromo esavalente	μg/L	< 1	< 1	< 1	< 1								5	
Arsenico	μg/L	0,89	0,52	0,79	0,61								10	
Cadmio	μg/L	< 0.3	< 0.3	< 0,3	< 0,3								5	
Cromo totale	μg/L	< 2	< 2	< 2	< 2								50	
Ferro	μg/L	18	14	230	18								200	1010
Manganese	μg/L	170	280	98	69								50	907,5
Nichel	μg/L	11	17	13	21								20	24,39

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 71 di 110

SETTEMBRE 2016

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S 5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Piombo	μg/L	< 0.3	< 0.3	0,49	< 0,3								10	
Rame	μg/L	< 2	< 2	< 2	14								1000	
Zinco	μg/L	< 5	< 5	< 5	< 5								3000	
Sodio	mg/L	1100	120	390	970									
Potassio	mg/L	28	27	49	69									
Calcio	mg/L	240	290	160	160									
Magnesio	mg/L	240	67	90	110									
Mercurio	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								1	
Solventi organici aromatici	μg/L	<0,1	<0,1	< 0,1	< 0,1									
Benzene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								1	
Toluene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								15	
Etilbenzene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								50	
Xilene (m,p-)	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								10	
Xilene (o-)	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								10	

REPORT ANNUALE 2016_REV1 pag 72 di 110

SETTEMBRE 2016

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Stirene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								25	
Solventi organici clorurati	μg/L	<0,1	<0,1	< 0,1	< 0,1								-	
Clorometano	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								1,5	
1,1-Dicloroetilene	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,05	
Cloruro di vinile	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								0,5	
Cloroformio	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,15	
1,2-Dicloroetano	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								3	
Tricloroetilene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								1,5	
Tetracloroetilene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								1,1	
Esaclorobutadiene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								0,15	
1,2-Dicloroetilene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								60	
1,1-Dicloroetano	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								810	
1,2-Dicloropropano	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								0,15	
1,1,2-Tricloroetano	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								0,2	

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 73 di 110

SETTEMBRE 2016

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
1,1,2,2-Tetracloroetano	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,05	
1,2,3-Tricloropropano	μg/L	< 0.001	< 0.001	< 0,001	< 0,001								0,001	
Composti organoalogenati	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Naftalene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Acenaftilene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Acenaftene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Fluorene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Fenantrene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Antracene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Fluorantene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1									
Pirene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								50	
Benzo(a)antracene	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,1	
Crisene	μg/L	< 0.1	< 0.1	< 0,1	< 0,1								5	
Benzo(b)fluorantene (A)	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,1	

EI PIEZOMETRI, OSSO CASALTA RINALDO (AN) LE 2016_REV1 pag 74 di 110

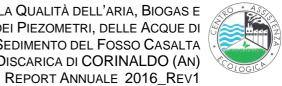
SETTEMBRE 2016

PARAMETRO	UM	S1	SA2	S2	SA1	S3	SA3	S4	SA4	S5	SA5	SA6	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Benzo(k)fluorantene (B)	μg/L	< 0.005	< 0.005	< 0,005	< 0,005								0,05	
Benzo(ghi)perilene (C)	μg/L	< 0.001	< 0.001	< 0,001	< 0,001								0,01	
Benzo(a)pirene	μg/L	< 0.001	< 0.001	< 0,001	< 0,001								0,01	
Indeno(123cd)pirene (D)	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,1	
Dibenzo(ah)antracene	μg/L	< 0.001	< 0.001	< 0,001	< 0,001								0,01	
Somm. Policiclici aromatici (A.B.C.D)	μg/L	< 0.01	< 0.01	< 0,01	< 0,01								0,1	
Fenoli	mg/L	0,16	0,15	0,16	0,15									
Solventi organici azotati	μg/L	< 10	< 10	< 10	< 10									
Pesticidi fosforati	μg/L	< 0.005	< 0.005	< 0.005	< 0.005									
Pesticidi totali	μg/L	< 0.01	< 0.01	< 0.01	< 0.01									

DISCARICA DI CORINALDO (AN) REPORT ANNUALE 2016_REV1 pag 75 di 110

A seguito dei lavori di ampliamento della discarica i vecchi piezometri sono stati quasi completamente smantellati e sostituiti con n.8 piezometri di cui 2 di monte: ASM1 e ASM2, e 6 di valle ASV1, ASV2, ASV3, ASV4, ASV5, ASV6. Il piezometro ASM1 corrisponde al vecchio piezometro S1, mentre gli altri sono dì nuova realizzazione. Tali piezometri sono stati previsti nel piano di sorveglianza che è parte integrante dell'AIA n. 106 rilasciata.

Su tutti i piezometri sono state effettuate le determinazione dei parametri chimico-fisici riportati in Tabella 12, secondo il protocollo analitico già in essere.


Tali piezometri sono stati campionati per la prima volta durante la campagna di monitoraggio del Dicembre 2016. Si fa presente che sui punti ASM2, ASV3, ASV4, ASV5 e ASV6 non è stata rilevata acqua.

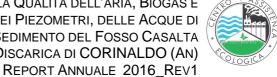
In tabella 14 sono riportati i risultati analitici attenuti con il confronto con i valori limite di cui alla tab. 2 dell'allegato 5 alla parte IV, Titolo V del D.Lgs. 152/06.

Tabella 14: Risultati analitici rilevati nei piezometri ASM1 e ASM2, ASV1, ASV2, ASV3, ASV4, ASV5, ASV6 del Dicembre 2016 UM = Unità di Misura.

DICEMBRE 2016						
PARAMETRO	UM	ASM1 (ex S1)	ASV1	ASV2	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Livello piezometrico da p.c.	m	2,4	1,5	4,3		
PH	-	7,62	6,65	7,27		
Conducibilità elettrica a 20℃	μS/cm	9300	3210	6910		
Temperatura	C	16	16	16		
Ossidabilità	mg/L O ₂	5	33,3	39,3		
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	< 5	< 5	< 5		
Carbonio organico totale (TOC)	mg/L C	110	190	48		
Cloruri	mg/L	870	300	1600		
Fluoruri	μg/L	< 30	< 30	< 30	1500	
Solfati	mg/L	<u>2500</u>	680	2800	250	2340
Azoto ammoniacale	mg/L NH4	< 0.05	< 0.05	< 0.05		
Azoto nitrico	mg/L N	< 0.02	2,8	3,3		

pag 76 di 110

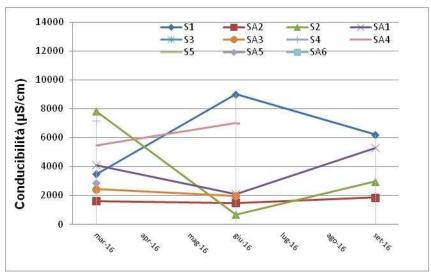
						Valori fondo
PARAMETRO	UM	ASM1 (ex S1)	ASV1	ASV2	D.Lgs 152/2006.	naturale ARPAM
Azoto nitroso	mg/L N	< 0.004	0,03	0,73		
Cianuri liberi	μg/L	< 4	< 4	< 4	50	
Cromo esavalente	μg/L	< 1	< 1	< 1	5	
Arsenico	μg/L	0,93	1,1	5	10	
Cadmio	μg/L	< 0.3	< 0.3	< 0.3	5	
Cromo totale	μg/L	< 2	< 2	< 2	50	
Ferro	μg/L	6,3	25	< 5	200	1010
Manganese	μg/L	230	<u>2700</u>	55	50	907,5
Nichel	μg/L	13	<u>42</u>	<u>35</u>	20	24,39
Piombo	μg/L	< 0.3	< 0.3	< 0.3	10	
Rame	μg/L	3,2	4,1	8,6	1000	
Zinco	μg/L	7,8	9	8	3000	
Sodio	mg/L	1300	290	2200		
Potassio	mg/L	38	98	98		
Calcio	mg/L	230	480	180		
Magnesio	mg/L	280	130	210		
Mercurio	μg/L	< 0.1	< 0.1	< 0.1	1	
Solventi organici aromatici	μg/L	<0.1	<0.1	<0.1		
Benzene	μg/L	< 0.1	< 0.1	< 0.1	1	
Toluene	μg/L	0,2	0,1	< 0.1	15	
Etilbenzene	μg/L	< 0.1	< 0.1	< 0.1	50	
Xilene (m,p-)	μg/L	< 0.1	0,1	< 0.1	10	
Xilene (o-)	μg/L	< 0.1	< 0.1	< 0.1	10	
Stirene	μg/L	0,26	< 0.1	< 0.1	25	
Solventi organici clorurati	μg/L	<0.1	<0.1	<0.1		
Clorometano	μg/L	< 0.1	< 0.1	< 0.1	1,5	

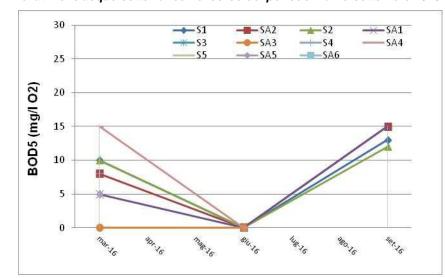


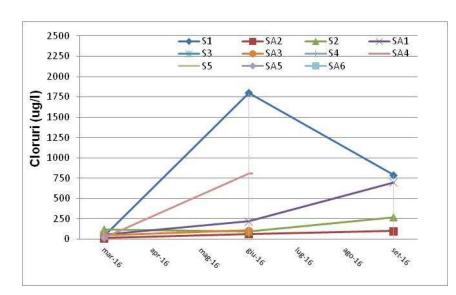
pag 77 di 110

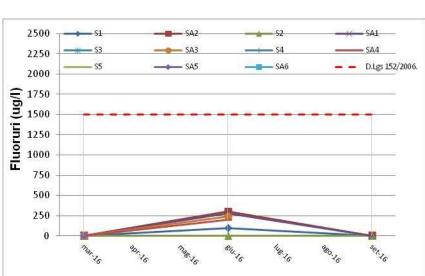
						Valori fondo
PARAMETRO	UM	ASM1 (ex S1)	ASV1	ASV2	D.Lgs 152/2006.	naturale ARPAM
1,1-Dicloroetilene	μg/L	< 0.01	< 0.01	< 0.01	0,05	
Cloruro di vinile	μg/L	< 0.1	< 0.1	< 0.1	0,5	
Cloroformio	μg/L	< 0.01	0,09	0,01	0,15	
1,2-Dicloroetano	μg/L	< 0.1	< 0.1	< 0.1	3	
Tricloroetilene	μg/L	< 0.1	< 0.1	< 0.1	1,5	
Tetracloroetilene	μg/L	< 0.1	< 0.1	< 0.1	1,1	
Esaclorobutadiene	μg/L	< 0.1	< 0.1	< 0.1	0,15	
1,2-Dicloroetilene	μg/L	< 0.1	< 0.1	< 0.1	60	
1,1-Dicloroetano	μg/L	< 0.01	< 0.01	< 0.01	810	
1,2-Dicloropropano	μg/L	< 0.1	0,11	< 0.1	0,15	
1,1,2-Tricloroetano	μg/L	< 0.1	< 0.1	< 0.1	0,2	
1,1,2,2-Tetracloroetano	μg/L	< 0.01	< 0.01	< 0.01	0,05	
1,2,3-Tricloropropano	μg/L	< 0.001	< 0.001	< 0.001	0,001	
Composti organoalogenati	μg/L	< 0.1	0,22	< 0.1		
Naftalene	μg/L	< 0.1	< 0.1	< 0.1		
Acenaftilene	μg/L	< 0.1	< 0.1	< 0.1		
Acenaftene	μg/L	< 0.1	< 0.1	< 0.1		
Fluorene	μg/L	< 0.1	< 0.1	< 0.1		
Fenantrene	μg/L	< 0.1	< 0.1	< 0.1		
Antracene	μg/L	< 0.1	< 0.1	< 0.1		
Fluorantene	μg/L	< 0.1	< 0.1	< 0.1		
Pirene	μg/L	< 0.1	< 0.1	< 0.1	50	
Benzo(a)antracene	μg/L	< 0.01	< 0.01	< 0.01	0,1	
Crisene	μg/L	< 0.1	< 0.1	< 0.1	5	
Benzo(b)fluorantene (A)	μg/L	< 0.01	< 0.01	< 0.01	0,1	
Benzo(k)fluorantene (B)	μg/L	< 0.005	< 0.005	< 0.005	0,05	

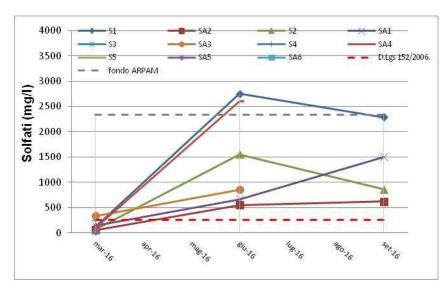
pag 78 di 110

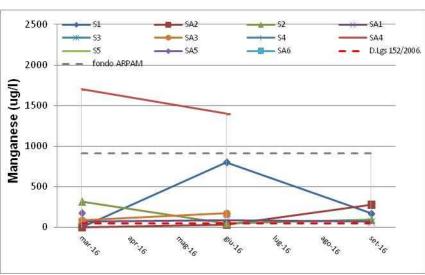

DICEMBRE 2016						
PARAMETRO	ИМ	ASM1 (ex S1)	ASV1	ASV2	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Benzo(ghi)perilene (C)	μg/L	< 0.001	< 0.001	< 0.001	0,01	
Benzo(a)pirene	μg/L	< 0.001	< 0.001	< 0.001	0,01	
Indeno(123cd)pirene (D)	μg/L	< 0.01	< 0.01	< 0.01	0,1	
Dibenzo(ah)antracene	μg/L	< 0.001	< 0.001	< 0.001	0,01	
Somm. Policiclici aromatici (A.B.C.D)	μg/L	< 0.01	< 0.01	< 0.01	0,1	
Fenoli	mg/L	< 0.05	< 0.05	< 0.05		
Solventi organici azotati	μg/L	< 10	< 10	< 10		
Pesticidi fosforati	μg/L	< 0.005	< 0.005	< 0.005		
Pesticidi totali	μg/L	< 0.01	< 0.01	< 0.01		

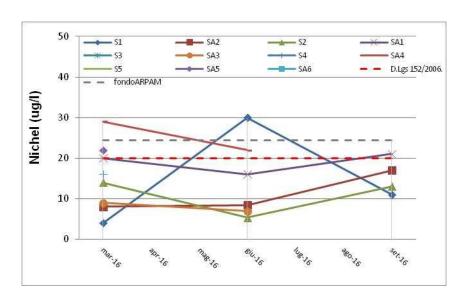

In Figura 7 a pagina seguente vengono riportati i grafici dei parametri più significativi rilevati alle acque sotterranee nel periodo marzo-settembre 2016 (vecchi piezometri).

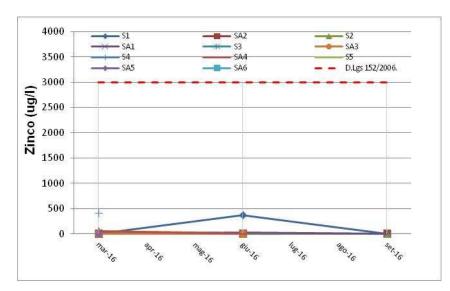

I dati del dicembre 2016 non sono graficabili in quanto rappresentano il 1° monitoraggio di una nuova configurazione di indagine.

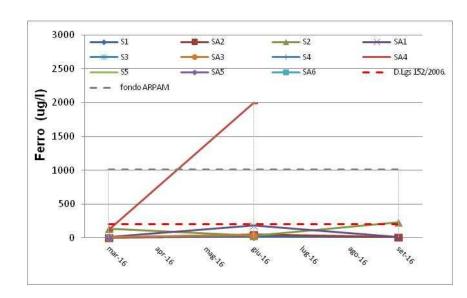

pag 79 di 110


Figura 7: grafici rappresentativi delle concentrazioni dei parametri più significativi rilevati nelle acque sotterranee nel corso del periodo marzo-settembre 2016.









E PERCOLATO
ELLE ACQUE DI
DSSO CASALTA
RINALDO (AN)
E 2016_REV1
pag 80 di 110

I risultati analitici ottenuti sono stati confrontati con le CSC (Concentrazioni Soglia di Contaminazione) per le acque sotterranee definite dal D.Lgs. 152/06 tab. 2 alla parte IV, Titolo V e con i "*valori di fondo naturale*" definiti da ARPAM attraverso lo studio commissionato dal Comune di Corinaldo.

Dal confronto con la normativa vigente (D.Lgs 152/2006. All.5 - Tab.2) e con i valori di fondo naturale determinati da ARPAM si possono effettuare le seguenti considerazioni di carattere generale:

- Come già indicato nelle relazioni mensili redatte nel corso del 2016 sarebbe auspicabile l'implementazione dello studio per la determinazione statistica de valori di fondo naturale, con un maggiore numero di dati analitici, al fine di disporre di un dato maggiormente rappresentativo.
- Come osservato anche nelle campagne precedenti si evidenziano inoltre, per tutti i parametri, valori estremamente variabili tra le coppie di piezometri vecchi e nuovi adiacenti (S1-SA2; S3-SA3; S4-SA4 e S5-SA5), in particolare per livello piezometrico, conducibilità elettrica, cloruri, solfati, sodio, manganese e zinco. Tali dati confermano la tesi esposta nel documento Relazione sul superamento dei limiti relativi alle acque di "impregnazione e di scorrimento sub-superficiale" redatto nell'aprile 2015 dal Dott. Geol. Lorenzo Magi Galluzzi, secondo la quale non è presente una vera e propria falda sotterranea intercettata dai piezometri, ma piuttosto un'acqua di ritenzione "intrappolata" all'interno dello strato impermeabile dei terreni definita acqua sub-superficiale e di impregnazione.
- Dal confronto dei dati nel corso delle 3 campagne trimestrali di campionamento si può osservare che il mese di giugno 2016 è stato caratterizzato mediamente dai tenori di concentrazione più elevati rispetto agli altri periodi dell'anno soprattutto per i parametri fluoruri, solfati, zinco e ferro.

Nella pagina seguente si riportano le osservazioni specifiche per ogni campagna trimestrale del 2016, comprendendo per il periodo marzo-settembre 2016 i vecchi piezometri S1, S2, S3, S4, S5, SA1, SA2, SA3, SA4, SA5 ed SA6 e per il Dicembre 2016 i nuovi piezometri ASM1, ASM2, ASV1, ASV2, ASV3, ASV4, ASV5, e ASV6.

REPORT ANNUALE 2016_REV1 pag 81 di 110

Piezometri S1	, S2, S3, S4, S5, SA1, SA2, SA3, S	SA4, SA5, SA6	Piezometri ASM1 ASM2, ASV1, ASV2, ASV3, ASV4, ASV5, ASV6
MARZO 2016	GIUGNO 2015	SETTEMBRE 2015	DICEMBRE 2015
per i solfati si rileva un unico superamento dei valore normativo sul piezometri SA3. Tale valore risulta comunque ben al dì sotto del fondo naturale determinato da ARPAM; per lo zinco non si rilevano superamenti delle CSC su nessuno dei piezometri indagati;	Per i solfati si rilevano superamenti del limite normativo per alcuni piezometri di cui S1 ed SA4 risultano al di sopra del fondo naturale ARPAM. Per lo zinco e i solfati non si rilevano superamenti in nessuno dei piezometri indagati	per i solfati non si rilevano superamenti dei valori di fondo naturale su nessuno dei piezometri indagati. Per lo zinco non si rilevano superamenti del limite normativo.	per i solfati si rilevano superamenti dei valori di fondo naturale sulle acque dei piezometri nei punti ASMI (ex S1) e ASV2. Per lo zinco non si rilevano superamenti del limite normativo.
per il ferro non si rilevano superamenti in nessuno dei piezometri indagati;	per il ferro si rileva un superamento del valore di fondo naturale sul piezometro SA4;	per il ferro si rileva un leggero superamento del limite normativo sul piezometro S2, valore comunque ben al di sotto del fondo naturale determinato da ARPAM	per il ferro non si rilevano superamenti in nessuno dei piezometri indagati;
per il manganese si rilevano superamenti del valore di fondo naturale solo sul piezometro SA4	per il manganese si rileva un superamento del valore di fondo naturale sul piezometro SA4;	per il manganese non si rilevano superamenti del valore di fondo naturale	per il manganese si rileva un superamento del valore di fondo naturale sul piezometro ASV1;
per il nichel si rilevano lievi superamenti del valore di fondo naturale sul solo piezometro SA4.	per il nichel l'unico superamento del valore di fondo naturale è stato rilevato nel piezometro S1	per il nichel si rileva un leggero superamento del limite normativo sul piezometro SA1, valore comunque ben al di sotto del fondo naturale determinato da ARPAM	per il nichel si rilevano superamenti del valore di fondo naturale sui piezometri ASV e ASV2
non si evidenziano superamenti per nessuno degli altri parametri indagati	non si evidenziano superamenti per nessuno degli altri parametri indagati	non si evidenziano superamenti per nessuno degli altri parametri indagati;	non si evidenziano superamenti per nessuno degli altri parametri indagati

pag 82 di 110

Dal confronto della campagne di indagine del periodo marzo-settembre 2016 con i dati del 2015 emergono le seguenti considerazioni:

- In merito ai parametri più significativi non sottoposti a limite normativo per le acque sotterranee quali conducibilità, BOD5 e Cloruri i valori registrati nel 2016 sono mediamente più bassi rispetto al 2015;
- Relativamente la parametro Solfati i valori sono complessivamente inferiori rispetto ai dati del 2015 e nel corso del 2016 si sono registrati molti meno superamenti del valore di fondo naturale rispetto allo stesso periodo del 2015.
- I valori registrati di ferro risultano invece in linea con i dati del 2015 e sempre inferiori al limite normativo tranne il caso di un isolato superamento registrato sul piezometro SA4 nel giugno 2016.
- Anche per i fluoruri si verifica sempre il rispetto del limite normativo con tenori decisamente inferiori rispetto al 2015;
- Infine per Nichel, Zinco e Manganese le concentrazioni rilevate nel 2016 sono mediamente inferiori rispetto a quanto registrato nel 2015: in particolare per lo zinco non si rilevano superamenti del valore limite, mentre nichel e manganese evidenziano sporadici superamenti del valore di fondo naturale Arpam a differenza di quanto era stato registrato nel 2015, con superamenti più frequenti.

In merito alla campagna dicembre 2016 emergono le seguenti considerazioni:

- per i solfati si rilevano superamenti dei valori di fondo naturale sulle acque dei piezometri nei punti ASMI (ex S1) e ASV2. Per lo zinco non si rilevano superamenti del limite normativo;
- per il ferro non si rilevano superamenti in nessuno dei piezometri indagati;
- per il manganese si rileva un superamento del valore di fondo naturale sul piezometro ASV1;
- per il nichel si rilevano superamenti del valore di fondo naturale sui piezometri ASV
 e ASV2:
- non si evidenziano superamenti per nessuno degli altri parametri indagati;

pag 83 di 110

7. MONITORAGGIO DELLE ACQUE DÌ SOTTOTELO

Le acque di sottotelo sono rappresentative di linee sotterranee di captazione. I punti di campionamento sono di nuova realizzazione e sono denominati AS1 e AS2 di cui AS1 è una linea realizzata alla base della "vecchia discarica" in corrispondenza dei vecchi piezometri oggetto del precedente monitoraggio, mentre AS2 raccoglie più linee di sottotelo realizzate sul lotto in ampliamento posizionate sul versante opposto rispetto alla discarica esistente.

Data l'origine di tali acque, correlabile con le acque sub superficiali e di impregnazione, il programma analitico adottato è lo stesso già in essere per le acque sotterranee riportato in Tabella 12.

La valutazione è stata effettuata mediante il confronto dei risultati ottenuti, riportati in tabella 15, con i valori limite riportati nella tab. 2 dell'allegato 5 alla parte IV, Titolo V del D.Lgs. 152/06, relativi alle acque sotterranee.

Tabella 15: Risultati analitici rilevati nelle acque di sottotelo, UM = Unità di Misura.

PARAMETRO	UM	AS1	AS2	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Livello piezometrico da p.c.	m	-	-		
РН	-	8,65	8,69		
Conducibilità elettrica a 20°C	μS/cm	4280	4370		
Temperatura	°C	15,5	15		
Ossidabilità	mg/L O ₂	31,7	31,9		
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	< 5	< 5		
Carbonio organico totale (TOC)	mg/L C	10	9		
Cloruri	mg/L	480	490		
Solfati	μg/L	1600	1600	250	2340
Fluoruri	mg/L	< 30	< 30	1500	
Azoto ammoniacale	mg/L NH4	0,942	0,828		
Azoto nitrico	mg/L N	20	20		
Azoto nitroso	mg/L N	1,5	1,5		

PARAMETRO	UM	AS1	AS2	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Cianuri liberi	μg/L	< 4	< 4	50	
Cromo esavalente	μg/L	< 1	< 1	5	
Arsenico	μg/L	1,6	1,4	10	
Cadmio	μg/L	< 0.3	< 0.3	5	
Cromo totale	μg/L	4,8	4,3	50	
Ferro	μg/L	9,1	6,4	200	1010
Manganese	μg/L	< 2	< 2	50	907,5
Nichel	μg/L	23	21	20	24,39
Piombo	μg/L	< 0.3	< 0.3	10	
Rame	μg/L	13	12	1000	
Zinco	μg/L	< 5	< 5	3000	
Sodio	mg/L	670	630		
Potassio	mg/L	73	69		
Calcio	mg/L	330	320		
Magnesio	mg/L	54	50		
Mercurio	μg/L	< 0.1	< 0.1	1	
Solventi organici aromatici	μg/L	<0.1	<0.1		
Benzene	μg/L	< 0.1	< 0.1	1	
Toluene	μg/L	0,26	0,19	15	
Etilbenzene	μg/L	< 0.1	< 0.1	50	
Xilene (m,p-)	μg/L	< 0.1	< 0.1	10	
Xilene (o-)	μg/L	< 0.1	< 0.1	10	
Stirene	μg/L	0,32	0,1	25	
Solventi organici clorurati	μg/L	<0.1	<0.1		
Clorometano	μg/L	< 0.1	< 0.1	1,5	
1,1-Dicloroetilene	μg/L	< 0.01	< 0.01	0,05	
Cloruro di vinile	μg/L	< 0.1	< 0.1	0,5	

PARAMETRO	UM	AS1	AS2	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Cloroformio	μg/L	< 0.01	< 0.01	0,15	
1,2-Dicloroetano	μg/L	< 0.1	< 0.1	3	
Tricloroetilene	μg/L	< 0.1	< 0.1	1,5	
Tetracloroetilene	μg/L	< 0.1	< 0.1	1,1	
Esaclorobutadiene	μg/L	< 0.1	< 0.1	0,15	
1,2-Dicloroetilene	μg/L	< 0.1	< 0.1	60	
1,1-Dicloroetano	μg/L	< 0.01	< 0.01	810	
1,2-Dicloropropano	μg/L	< 0.1	< 0.1	0,15	
1,1,2-Tricloroetano	μg/L	< 0.1	< 0.1	0,2	
1,1,2,2-Tetracloroetano	μg/L	< 0.01	< 0.01	0,05	
1,2,3-Tricloropropano	μg/L	< 0.001	< 0.001	0,001	
Composti organoalogenati	μg/L	< 0.1	< 0.1		
Naftalene	μg/L	< 0.1	< 0.1		
Acenaftilene	μg/L	< 0.1	< 0.1		
Acenaftene	μg/L	< 0.1	< 0.1		
Fluorene	μg/L	< 0.1	< 0.1		
Fenantrene	μg/L	< 0.1	< 0.1		
Antracene	μg/L	< 0.1	< 0.1		
Fluorantene	μg/L	< 0.1	< 0.1		
Pirene	μg/L	< 0.1	< 0.1	50	
Benzo(a)antracene	μg/L	< 0.01	< 0.01	0,1	
Crisene	μg/L	< 0.1	< 0.1	5	
Benzo(b)fluorantene (A)	μg/L	< 0.01	< 0.01	0,1	
Benzo(k)fluorantene (B)	μg/L	< 0.005	< 0.005	0,05	
Benzo(ghi)perilene (C)	μg/L	< 0.001	< 0.001	0,01	
Benzo(a)pirene	μg/L	< 0.001	< 0.001	0,01	
Indeno(123cd)pirene (D)	μg/L	< 0.01	< 0.01	0,1	

PARAMETRO	UM	AS1	AS2	D.Lgs 152/2006.	Valori fondo naturale ARPAM
Dibenzo(ah)antracene	μg/L	< 0.001	< 0.001	0,01	
Somm. Policiclici aromatici (A.B.C.D)	μg/L	< 0.01	< 0.01	0,1	
Fenoli	mg/L	< 0.05	< 0.05		
Solventi organici azotati	μg/L	< 10	< 10		
Pesticidi fosforati	μg/L	< 0.005	< 0.005		
Pesticidi totali	μg/L	< 0.01	< 0.01		

I risultati analitici ottenuti sono stati confrontati con le CSC (Concentrazioni Soglia di Contaminazione) per le acque sotterranee definite dal D.Lgs. 152/06 tab. 2 alla parte IV, Titolo V e con i "*valori di fondo naturale*" definiti da ARPAM attraverso lo studio commissionato dal Comune di Corinaldo.

Dal confronto con la normativa vigente (D.Lgs 152/2006. All.5 - Tab.2) e con i valori di fondo naturale determinati da ARPAM si può osservare che non si evincono superamenti rispetto ai valori di fondo naturale definiti da ARPAM su nessuno dei due punti monitorati.

8. MONITORAGGIO DELLE ACQUE DI RUSCELLAMENTO

Complessivamente prima de termine dei lavori di ampliamento della discarica, sino a settembre 2016 erano presenti 3 postazioni di misura, di cui una interna all'area perimetrale della discarica denominato *punto n 1 – drenaggio sicurezza* e due esterne ad essa, punti 2 e 3, rispettivamente *n.2 fosso Casalta a monte dell'impianto* e *n.3 fosso Casalta a valle dell'impianto*, nelle quali erano stati prelevati campioni per la determinazione dei parametri chimico-fisici riportati nelle Tabelle 16 e 17.

In merito al *punto n 1 – drenaggio sicurezza* i valori limite di riferimento sono quelli riportati nella tab. 2 dell'allegato 5 alla parte IV, Titolo V del D.Lgs. 152/06, relativi alle acque sotterranee - vedi tab 16.

In merito ai punti, *n.2 fosso Casalta a monte dell'impianto* e *n.3 fosso Casalta a valle dell'impianto* i valori limite di riferimento sono quelli relativi alla normativa vigente in materia scarichi idrici in acque superficiali (D.Lgs 152/2006, All.5 alla parte III - Tab.3) - vedi tab 17.

Tabella 16: Parametri di monitoraggio nelle acque di ruscellamento del punto n 1 – drenaggio sicurezza e rispettivi unità di misura (UM), metodi analitici e riferimenti normativi.

PARAMETRO	UM	METODO ANALITICO	RIFERIMENTI NORMATIVI
РН	-	ADAT OND IDSA 2000 Mar. 20 2002	
Conducibilità elettrica a 20°C	μS/cm	APAT CNR IRSA 2060 Man 29 2003	
Temperatura	°C	ISTISAN 2007/31 ISS BBA 043	
Ossidabilità	mg/L O ₂	ISTISAN 2007/31 ISS BEB 027	
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	APHA Standard Methods 5210 D	
Carbonio organico totale (TOC)	mg/L C	UNI EN 1484:1999	
Cloruri	mg/L	APAT CNR IRSA 4020 Man 29 2003	
Fluoruri	μg/L	ADAT OND IDGA 4000 M 20 2002	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Solfati	mg/L	APAT CNR IRSA 4020 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Azoto ammoniacale	mg/L NH4	APHA Standard Methods 4500 NH3 D	
Azoto nitrico	mg/L N	APAT CNR IRSA 4020 Man 29 2003	

PARAMETRO	UM	METODO ANALITICO	RIFERIMENTI NORMATIVI
Azoto nitroso	mg/L N		
Cianuri liberi	μg/L	APHA Standard Methods 4500 CN	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Cromo esavalente	μg/L	APAT CNR IRSA 3150C Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Arsenico	μg/L		
Cadmio	μg/L		
Cromo totale	μg/L		D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Ferro	μg/L		parte IV III V tab 2
Manganese	μg/L	APHA Standard Methods 3125 B	
Nichel	μg/L		
Piombo	μg/L		
Rame	μg/L		
Zinco	μg/L		
Sodio	mg/L		
Potassio	mg/L	APHA Standard Methods 3120 B	
Calcio	mg/L		
Magnesio	mg/L		
Mercurio	μg/L	APHA Standard Methods 3125 B	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Benzene	μg/L		D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Toluene	μg/L		
Etilbenzene	μg/L	APHA Standard Methods 6200B	
Xilene (m,p-)	μg/L	APITA Standard Methods 6200B	
Xilene (o-)	μg/L		
Stirene	μg/L		
Clorometano	μg/L		
1,1-Dicloroetilene	μg/L		B. 150/2005
Cloruro di vinile	μg/L		D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Cloroformio	μg/L	APHA Standard Methods 6200B	

PARAMETRO	ИМ	METODO ANALITICO	RIFERIMENTI NORMATIVI
1,2-Dicloroetano	μg/L		
Tricloroetilene	μg/L		
Tetracloroetilene	μg/L		D.I 152/2007 All 5
Esaclorobutadiene	μg/L		D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Sommatoria organoalogenati	μg/L	APHA Standard Methods 6200B	
1,2-Dicloroetilene	μg/L		
1,1-Dicloroetano	μg/L		
1,2-Dicloropropano	μg/L		
1,1,2-Tricloroetano	μg/L		
1,1,2,2-Tetracloroetano	μg/L		
1,2,3-Tricloropropano	μg/L		
Composti organoalogenati	μg/L	APHA Standard Methods 6200B	
Naftalene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Acenaftilene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Acenaftene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fluorene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fenantrene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Antracene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fluorantene	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Pirene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Benzo(a)antracene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Crisene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Benzo(b)fluorantene (A)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Benzo(k)fluorantene (B)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Benzo(a)pirene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Indeno(123cd)pirene (D)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Dibenzo(ah)antracene	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2

PARAMETRO	UM	METODO ANALITICO	RIFERIMENTI NORMATIVI
Benzo(ghi)perilene (C)	μg/L	APAT CNR IRSA 5080 Man 29 2003	D.Lgs 152/2006 All.5 parte IV Tit V tab 2
Somm. Policiclici aromatici (A.B.C.D)	μg/L	APAT CNR IRSA 5080 Man 29 2003	
Fenoli	mg/L	APAT CNR IRSA 5070 A Man 29 2003	
Solventi organici azotati	μg/L	EPA 8270D 2007	
Pesticidi fosforati	μg/L	EPA 8270D 2007	
Pesticidi totali	μg/L	EPA 8270D 2007	

Tabella 17: Parametri di monitoraggio nelle acque di ruscellamento dei punti n 2 fosso Casalta a monte dell'impianto e n.3 fosso Casalta a valle dell'impianto e rispettivi unità di misura (UM), metodi analitici, e riferimenti normativi.

PARAMETRO	UM	METODO ANALITICO	RIFERIMENTI NORMATIVI
РН	-	APAT CNR IRSA 2060 Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Conducibilità elettrica a 20°C	μS/cm	AI AI CIR IRSA 2000 Maii 27 2003	
Temperatura	°C	ISTISAN 2007/31 ISS BBA 043	
Ossidabilità	mg/L O ₂	ISTISAN 2007/31 ISS BEB 027	
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	APHA Standard Methods 5210 D	D.Lgs 152/2006. All.5 parte III- Tab.3
Carbonio organico totale (TOC)	mg/L C	UNI EN 1484:1999	
Cloruri	mg/L		
Fluoruri	μg/L	APAT CNR IRSA 4020 Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Solfati	mg/L		D.Lgs 152/2006. All.5 parte III- Tab.3
Azoto ammoniacale	mg/L NH4	APHA Standard Methods 4500 NH3 D	D.Lgs 152/2006. All.5 parte III- Tab.3.
Azoto nitrico	mg/L N	APAT CNR IRSA 4020 Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Azoto nitroso	mg/L N	APAT CNR IRSA 4050 Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Cianuri totali	mg/L	APAT CNR IRSA 4070 Man 29 2003	D.Lgs 152/2006. All.5 - Tab.2
Cromo esavalente	mg/L	APAT CNR IRSA 3150C Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Arsenico	mg/L		D.Lgs 152/2006.
Cadmio	mg/L	APHA Standard Methods 3120	All.5 parte III- Tab.3
Cromo totale	mg/L		

PARAMETRO	ИМ	METODO ANALITICO	RIFERIMENTI NORMATIVI
Ferro	mg/L		
Manganese	mg/L		
Nichel	mg/L	APHA Standard Methods 3120	D.Lgs 152/2006. All.5 parte III- Tab.3
Piombo	mg/L		
Rame	mg/L		
Zinco	mg/L		
Sodio	mg/L		
Potassio	mg/L	APHA Standard Methods 3120	
Calcio	mg/L		
Magnesio	mg/L		
Mercurio	mg/L	APAT CNR IRSA 3200 A2 Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Solventi organici aromatici	mg/L		D.Lgs 152/2006. All.5 parte III- Tab.3
Benzene	mg/L		•
Toluene	mg/L		
Etilbenzene	mg/L	APHA Standard Methods 6200B	
Xilene (m,p-)	mg/L		
Xilene (o-)	mg/L		
Stirene	mg/L		
Composti organici clorurati totali	mg/L		D.Lgs 152/2006. All.5 parte III- Tab.3
Cloruro di vinile	mg/L		
1,1-Dicloroetilene	mg/L		
Diclorometano	mg/L		
trans-1,2-Dicloroetilene	mg/L	APAT CNR IRSA 5150 Man 29 2003	
1,1-Dicloroetano	mg/L		
cis-1,2-Dicloroetilene	mg/L		
Cloroformio	mg/L		
1,1,1-Tricloroetano	mg/L		

PARAMETRO	UM	METODO ANALITICO	RIFERIMENTI NORMATIVI
Carbonio tetracloruro	mg/L		
1,2-Dicloroetano	mg/L	APAT CNR IRSA 5150 Man 29 2003	
Tricloroetilene	mg/L		
1,1,2-Tricloroetano	mg/L		
Tetracloroetilene	mg/L		
1,1,2,2-Tetracloroetano	mg/L		
AOX - Composti Organo Alogenati	mg/L	Metodo kit Lange 390	
Sommatoria IPA	mg/L	APAT CNR IRSA 5080 Man 29 2003	
Fenoli	mg/L	APAT CNR IRSA 5070 A Man 29 2003	D.Lgs 152/2006. All.5 parte III- Tab.3
Solventi organici azotati	mg/L	EPA 8270D 2007	D.Lgs 152/2006. All.5 parte III- Tab.3
Pesticidi fosforati	mg/L	EPA 8270D 2007	D.Lgs 152/2006. All.5 parte III- Tab.3
Pesticidi totali	mg/L	EPA 8270D 2007	D.Lgs 152/2006. All.5 parte III- Tab.3
Aldrin	mg/L		
Dieldrin	mg/L	ADAT CND IDGA 5150 M 20 2002	D.Lgs 152/2006.
Endrin	mg/L	APAT CNR IRSA 5150 Man 29 2003	All.5 parte III- Tab.3
Isodrin	mg/L		

Dal dicembre 2016 a seguito dei lavori di ampliamento, è stato modificato il percorso del fosso e pertanto i precedenti punti di campionamento non sono più esistenti e sono stati sostituiti da n. 9 punti di prelievo di acque di ruscellamento di cui 3 monte ARCM1-ARCM2-ARCM3, 4 intermedi AR1-AR2-AR3-AR4-AR5 ed 1 di valle ARCV; Il punto ARCM1 corrisponde nella situazione attuale anche al punto AR1.

Il confronto con i risultati ottenuti, riportati in tabella 19 è stato effettuato con la normativa vigente in materia scarichi idrici in acque superficiali (D.Lgs 152/2006, All.5 alla parte III - Tab.3), mentre in tabella 17 è riportato il protocollo analitico adottato, corrispondente a quello già in essere.

pag 93 di 110

7.1 RISULTATI ANALISI DELLE ACQUE DI RUSCELLAMENTO

Di seguito sono riportati in forma tabellare (tabella 18) i risultati analitici rilevati nei punti di monitoraggio delle acque di ruscellamento (vecchi punti) nel periodo marzo-settembre 2016, per i quali sono necessarie le seguenti considerazioni:

- Durante il monitoraggio del marzo 2016 non è stato possibile campionare nessuno dei 3 campioni di acqua di ruscellamento per inaccessibilità dei punti di prelievo.
- Durante il giugno 2016 è stato possibile campionare solo il punto denominato punto 2 fosso Casalta a monte il quale è stato confrontato con la tabella relativa agli scarichi idrici in acque superficiali (tab 3 all' All 5, parte III del D.Lgs. 152/06), (tab 13). In effetti punti 1 "drenaggio di sicurezza" e 3 " fossa Casalta a valle" sono risultati inaccessibili, e dunque non campionabili, a seguito dei lavori di ampliamento dell'impianto.
- Analogamente anche durante il monitoraggio del settembre 2016 è stato possibile campionare solo il Punto2 - fosso Casalta a monte.

I risultati delle campagne di indagine eseguite sono riportate nella tabella seguente (tab18) i limiti presi in considerazione sono quelli relativi agli scarichi idrici in acque superficiali: tab 3 all' All 5, parte III del D.Lgs. 152/06, (tab 17).

Tabella 18: Risultati analitici nelle acque di ruscellamento nel Punto2 - fosso Casalta a monte dei periodi di giugno e settembre 2016, media calcolata e limiti normativi

PARAMETRO	UM	Punto 2-fosso	o casalta a monte	MEDIA	D.Lgs 152/2006	
TAKAMETKO	O.III	giugno-16 settembre-16		WILDIA	All.5 parte III- Tab.3	
PH	-	8,43	7,59	8,01	5,5-9,5	
Conducibilità elettrica a 20°C	μS/cm	1000,00	900,00	950,00		
Temperatura	°C	17,00	18,00	17,50		
Ossidabilità	mg/L O ₂	50,00	34,00	42,00		
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	20,00	5,00	12,50	40	
Carbonio organico totale (TOC)	mg/L C	12,00	12,00	12,00		
Cloruri	mg/L	39,00	97,00	68,00		
Fluoruri	mg/L	<0,03	0,33	0,33	6	
Solfati	mg/L	29,00	290,00	159,50	1000	
Azoto ammoniacale	mg/L NH4	0,26	6,95	3,61	15	
Azoto nitrico	mg/L N	0,26	0,56	0,41	20	

pag 94 di 110

PARAMETRO	UM	Punto 2-foss	o casalta a monte	MEDIA	D.Lgs 152/2006	
		giugno-16	settembre-16		All.5 parte III- Tab.3	
Azoto nitroso	mg/L N	0,20	0,29	0,25	0,6	
Cianuri totali	mg/L	< 0,05	<0,05	<0,05	0,5	
Cromo esavalente	mg/L	< 0,001	<0,001	<0,001	0,2	
Arsenico	mg/L	< 0,01	0,01	0,01	0,5	
Cadmio	mg/L	< 0,002	<0,002	<0,002	0,02	
Cromo totale	mg/L	< 0,1	<0,1	<0,1	2	
Ferro	mg/L	< 0,1	0,53	0,53	2	
Manganese	mg/L	< 0,05	0,07	0,07	2	
Nichel	mg/L	< 0,05	<0,05	<0,05	2	
Piombo	mg/L	< 0,02	<0,02	<0,02	0,2	
Rame	mg/L	< 0,02	<0,02	<0,02	0,1	
Zinco	mg/L	< 0,02	0,12	0,12	0,5	
Sodio	mg/L	450,00	98,00	274,00		
Potassio	mg/L	24,00	34,00	29,00		
Calcio	mg/L	300,00	87,00	193,50		
Magnesio	mg/L	140,00	13,00	76,50		
Mercurio	mg/L	< 0,001	<0,001	<0,001	0,005	
Solventi organici						
aromatici	mg/L	< 0,05	<0,05	<0,05	0,2	
Benzene	mg/L	< 0,01	<0,01	<0,01		
Toluene	mg/L	< 0,01	<0,01	<0,01		
Etilbenzene	mg/L	< 0,01	<0,01	<0,01		
Xilene (m,p-)	mg/L	< 0,01	<0,01	<0,01		
Xilene (o-)	mg/L	< 0,01	<0,01	<0,01		
Stirene	mg/L	< 0,01	<0,01	<0,01		
Composti organici clorurati totali	mg/L	< 0,05	<0,05	<0,05	1	
Cloruro di vinile	mg/L	< 0,01	<0,01	<0,01		
1,1-Dicloroetilene	mg/L	< 0,01	<0,05	<0,05		
Diclorometano	mg/L	< 0,001	< 0,001	< 0,001		
trans-1,2-Dicloroetilene	mg/L	< 0,001	< 0,001	< 0,001		
1,1-Dicloroetano	mg/L	< 0,01	<0,01	<0,01		
cis-1,2-Dicloroetilene	mg/L	< 0,01	<0,01	<0,01		
Cloroformio	mg/L	< 0,001	< 0,001	< 0,001		
1,1,1-Tricloroetano	mg/L	< 0,01	<0,01	<0,01		
Carbonio tetracloruro	mg/L	< 0,01	<0,01	<0,01		
1,2-Dicloroetano	mg/L	< 0,01	<0,01	<0,01		
Tricloroetilene	mg/L	< 0,001	<0,001	<0,001		
1,1,2-Tricloroetano	mg/L	< 0,01	<0,01	<0,01		
Tetracloroetilene	mg/L	< 0,001	<0,001	<0,001		

pag 95 di 110

PARAMETRO	UM	Punto 2-fosso	o casalta a monte	MEDIA	D.Lgs 152/2006
. ,	5	giugno-16	settembre-16	TVIED!/	All.5 parte III- Tab.3
1,1,2,2-Tetracloroetano	mg/L	< 0,01	<0,01	<0,01	
AOX - Composti Organo Alogenati	mg/L	< 0,05	<0,05	<0,05	
Sommatoria Idrocarburi Policiclici Aromatici	mg/L	< 0,01	<0,01	<0,01	
Fenoli	mg/L	<0,05	<0,05	<0,05	0,5
Solventi organici azotati	mg/L	< 0,01	<0,01	<0,01	0,1
Pesticidi fosforati	mg/L	< 0,01	<0,01	<0,01	0,1
Pesticidi totali	mg/L	< 0,01	<0,01	<0,01	0,05
Aldrin	mg/L	< 0,01	<0,01	<0,01	0,01
Dieldrin	mg/L	< 0,01	<0,01	<0,01	0,01
Endrin	mg/L	< 0,01	<0,01	<0,01	0,002
Isodrin	mg/L	< 0,01	<0,01	<0,01	0,002

Il confronto dei risultati ottenuti nel sito di fosso Casalta (Punto2), con la normativa considerata (tab 3 all' All 5, parte III del D.Lgs. 152/06) rileva per tutti i parametri analizzati la conformità con i limiti previsti per gli scarichi idrici in acque superficiali.

A seguito dei lavori di ampliamento della discarica i vecchi punti di preleivo delle acque di ruscellamento sono stati completamente smantellati e sostituiti da n. 9 punti di prelievo di cui 3 monte ARCM1-ARCM2-ARCM3, 4 intermedi AR1-AR2-AR3-AR4-AR5 ed 1 di valle ARCV; Il punto ARCM1 corrisponde nella situazione attuale anche al punto AR1.

Su tutti i campioni sono state effettuate le determinazione dei parametri chimicofisici riportati in Tabella 17, secondo il protocollo analitico già in essere.

Tali punti di prelievo sono stati campionati per la prima volta durante la campagna di monitoraggio del Dicembre 2016. Si fa presente che sui punti ARCM3, AR3, AR5, ARCV non è stata rilevata acqua.

I risultati della campagne di indagine del dicembre 2016 è riportata nella tabella seguente (tab19) i limiti presi in considerazione sono quelli relativi agli scarichi idrici in acque superficiali: tab 3 all' All 5, parte III del D.Lgs. 152/06.

Tabella 19: Risultati analitici nelle acque di ruscellamento ARCM1 ARCM2 AR2 AR4 del dicembre 2016, limiti normativi

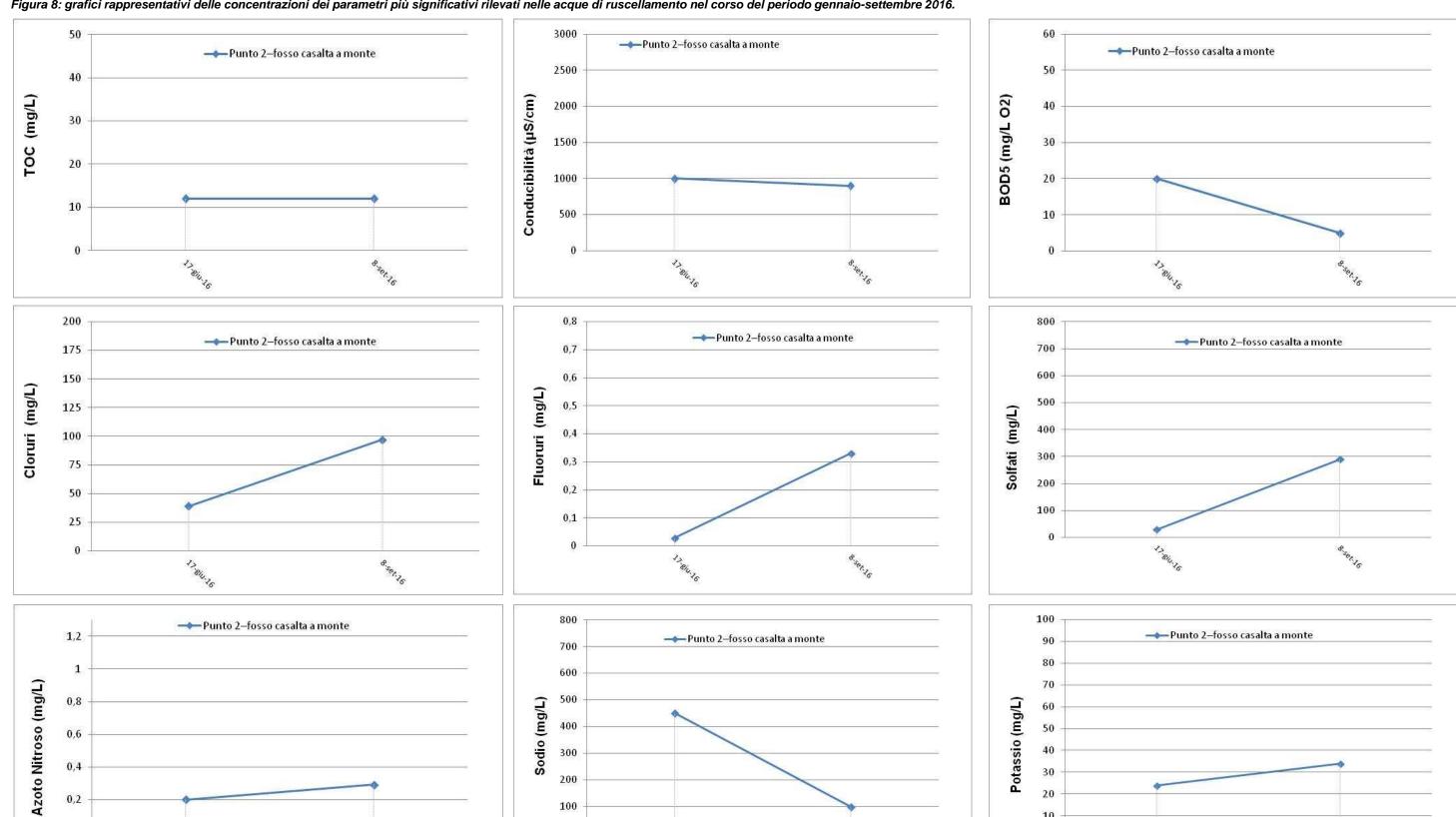
PARAMETRO	UM	ARCM1	ARCM2	AR2	AR4	D.Lgs 152/2006. All.5 parte III- Tab.3
PH	-	7,95	8,71	7,78	7,95	5,5-9,5
Conducibilità elettrica a 20°C	μS/cm	3100	430	360	2800	
Temperatura	°C	16,3	16	15,7	15,7	
Ossidabilità	mg/L O ₂	5	110	85	24	
Richiesta biochimica di ossigeno (BOD5)	mg/L O ₂	< 5	< 5	< 5	< 5	40
Carbonio organico totale (TOC)	mg/L C	2	15	11	7	
Cloruri	mg/L	270	62	26	280	
Fluoruri	mg/L	< 0.03	0,038	0,42	< 0.03	6
Solfati	mg/L	1300	200	81	870	1000
Azoto ammoniacale	mg/L NH4	< 0.05	< 0.05	< 0.05	1,12	15
Azoto nitrico	mg/L N	< 0.02	0,036	< 0.02	12	20
Azoto nitroso	mg/L N	0,03	0,03	0,03	1,5	0,6
Cianuri totali	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	0,5
Cromo esavalente	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	0,2
Arsenico	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,5
Cadmio	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	0,02
Cromo totale	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	2
Ferro	mg/L	0,16	0,19	16	16	2
Manganese	mg/L	< 0.05	< 0.05	0,33	0,54	2
Nichel	mg/L	< 0.05	< 0.05	< 0.05	0,054	2
Piombo	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	0,2
Rame	mg/L	< 0.02	< 0.02	0,11	0,031	0,1
Zinco	mg/L	< 0.02	< 0.02	0,12	0,44	0,5
Sodio	mg/L	410	37	20	430	
Potassio	mg/L	19	27	9,6	42	

PARAMETRO	UM	ARCM1	ARCM2	AR2	AR4	D.Lgs 152/2006. All.5 parte III- Tab.3
Calcio	mg/L	260	35	96	320	
Magnesio	mg/L	110	3,8	12	34	
Mercurio	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	0,005
Solventi organici aromatici	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	0,2
Benzene	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Toluene	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Etilbenzene	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Xilene (m,p-)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Xilene (o-)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Stirene	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Composti organici clorurati totali	mg/L	< 0.05	0,41	0,22	< 0.05	1
Cloruro di vinile	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
1,1-Dicloroetilene	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Diclorometano	mg/L	< 0.001	0,41	0,22	< 0.001	
trans-1,2-Dicloroetilene	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1,1-Dicloroetano	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
cis-1,2-Dicloroetilene	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Cloroformio	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1,1,1-Tricloroetano	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Carbonio tetracloruro	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
1,2-Dicloroetano	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Tricloroetilene	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1,1,2-Tricloroetano	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
Tetracloroetilene	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
1,1,2,2-Tetracloroetano	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
AOX - Composti Organo Alogenati	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	
Sommatoria Idrocarburi Policiclici Aromatici	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	

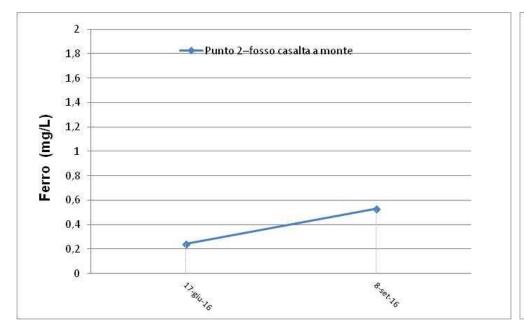
PARAMETRO	им	ARCM1	ARCM2	AR2	AR4	D.Lgs 152/2006. All.5 parte III- Tab.3
Fenoli	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	0,5
Solventi organici azotati	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,1
Pesticidi fosforati	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,1
Pesticidi totali	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,05
Aldrin	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,01
Dieldrin	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,01
Endrin	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,002
Isodrin	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0,002

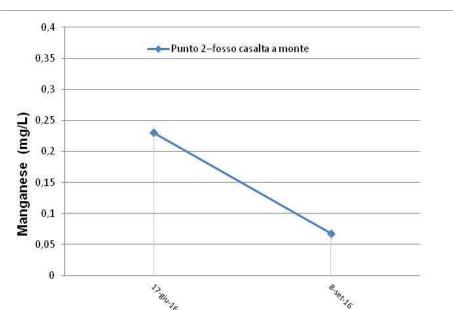
Il confronto con la normativa considerata (D.Lgs 152/2006, All.5 - Tab.3, parte III) si rilevano alcun superamenti dei valori limite per gli scarichi idrici in acque superficiali, evidenziati in tabella. Di questi il superamento del parametro solfati è stato rilevato solo sul piezometro di monte ARCM1.

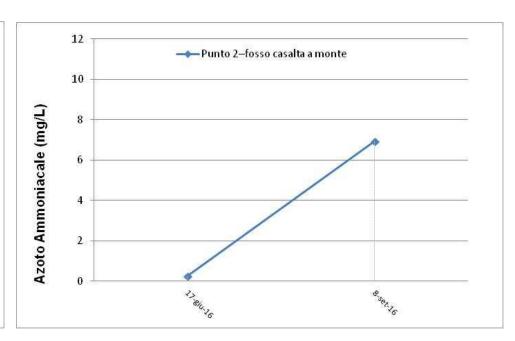
I dati del dicembre 2016 non sono graficabili in quanto rappresentano il 1° monitoraggio di una nuova configurazione di indagine.


10

pag 99 di 110


Figura 8: grafici rappresentativi delle concentrazioni dei parametri più significativi rilevati nelle acque di ruscellamento nel corso del periodo gennaio-settembre 2016.




100

Nella Figura 7 è riportato graficamente l'andamento di conducibilità elettrica, BOD5, TOC (Carbonio organico totale), cloruri, fluoruri, solfati, azoto nitroso, azoto ammoniacale, potassio, sodio, ferro e manganese.

Per l'anno 2016 sono disponibili esclusivamente i dati del Punto 2- fosso Casalta a Monte per i mesi di giugno e settembre.

Per la conducibilità elettrica, BOD5, sodio e manganese, si osservano valori maggiori in giugno rispetto a settembre 2016.

Il valore di TOC è rimasto pressoché invariato.

Rispetto al 2015 tutti i valori misurati su punto unto 2- fosso Casalta a Monte, nel corso del 2016, risultano generalmente inferiori.

DI COGLE

9. RISULTATI ANALISI DEI SEDIMENTI DEL FOSSO CASALTA

Per i punti di monitoraggio dei sedimenti nell'anno 2016 sono stati individuati n. 4 nuovi punti di campionamento del sedimento fosso di cui 1 a monte SARCM1, due intermedi SAR2 e SAR5 e 1 a valle SARCV, tutti in corrispondenza dei rispettivi punti di monitoraggio delle acque di ruscellamento; Tali punti di campionamento del sedimento fosso sono tutti di nuova realizzazione e non coincidono con i punti di prelievo campionati sono al 2015.

Il programma analitico è rimasto invariato rispetto alle precedenti annualità, i parametri chimico-fisici ricercati sono riportati in Tabella 20.

La valutazione è stata effettuata mediante il confronto dei risultati con i valori limite riportati nella Tabella 1, Colonna B dell'Allegato 5 al D.Lgs 152/2006 (siti ad uso commerciale ed industriale).

Tabella 20: Parametri monitorati nel sedimento del Fosso in corrispondenza dei punti SARCM1, SAR2, SAR5 e SARCV e rispettivi unità di misura (UM), metodi analitici, e riferimenti normativi.

PARAMETRO	UM	METODO ANALITICO	RIFERIMENTI NORMATIVI
pH ()	-	D.M. 13/09/1999 Met. III	-
Cadmio (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Cromo (mg/kg)	mg/Kg .s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Manganese (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	-
Nichel (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Piombo (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Ferro (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	-
Rame (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Vanadio (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Zinco (mg/kg)	mg/Kg s.s.	APHA Standard Methods 3125	D.Lgs 152/2006. parte IV All.5 - Tab.1, col B
Test di biotossicità con Daphnia magna (%)	%	APAT CNR IRSA 8020B Man 29 2003	-

pag 103 di 110

9.1 RISULTATI ANALISI DEI SEDIMENTI DEL FOSSO CASALTA

In Tabella 21 sono riportati i risultati analitici dei sedimenti determinati durante il monitoraggio del 14 dicembre 2016 nelle quattro postazioni: SARCM1, SAR2, SAR5 e SARCV.

Tabella 21: Risultati analitici nel sedimento del Fosso e rispettivi unità di misura (UM), metodi analitici, e riferimenti normativi.

PARAMETRO	UM	SR5	SR2	SARCV	SARCM1	D.Lgs 152/2006. parte IV AII.5 - Tab.1, col B
pH ()	-	8,9	9	9	9,1	-
Cadmio (mg/kg)	mg/Kg s.s.	0,2	0,21	0,21	0,21	15
Cromo (mg/kg)	mg/Kg .s.	36	40	39	43	800
Manganese (mg/kg)	mg/Kg s.s.	390	490	430	440	-
Nichel (mg/kg)	mg/Kg s.s.	42	51	50	51	500
Piombo (mg/kg)	mg/Kg s.s.	12	12	11	12	1000
Ferro (mg/kg)	mg/Kg s.s.	17000	20000	20000	21000	-
Rame (mg/kg)	mg/Kg s.s.	22	23	24	26	600
Vanadio (mg/kg)	mg/Kg s.s.	28	33	32	35	250
Zinco (mg/kg)	mg/Kg s.s.	70	67	67	68	1500
Test di biotossicità con Daphnia magna (%)	%	12	12	12	11	-

Il confronto con la normativa vigente (D.Lgs 152/2006, All.5 - Tab.1, Col. B) non rileva alcun superamento dei valori limite. Il confronto tra i valori a monte e quelli a valle della discarica non evidenzia differenze significative. I risultati sono confrontabili anche con i valori determinati nel dicembre 2015.

10. CONCLUSIONI

10.1 QUALITA' DELL'ARIA

In sintesi per quanto riguarda il confronto tra i siti non si evidenziano differenze significative

I valori di ammoniaca, acido solfidrico e mercaptani totali sono risultati sempre inferiori al rispettivo limite di rivelabilità.

Le sostanze organiche volatili hanno mostrato contenuti bassi, e sempre inferiori al limite normativo.

Anche per le polveri PM10 si osservano concentrazioni sempre inferiori al limite normativi previsto dal DM 60/02 e simili tra i 5 siti di monitoraggio, tranne che nel monitoraggio del luglio 2016 in cui sui punti QA3 e QA4 si sono verificati dei lievi superamenti, presumibilmente dovuti ai lavori di cantiere in corso per l'ampliamento della discarica. Tali valori già dal mese successivo, agosto 2016 sono subito rientrati e non sono stati registrati altri superamenti nel corso del 2016. Complessivamente i valori di PM10 sono in linea con quanto registrato nel 2015.

Le concentrazioni di metano non mostrano differenze significative fra i 5 siti nel corso del 2016 ed hanno valori contenuti. Rispetto al 2015 i dati di metano rilevati risultano mediamente inferiori.

Analogamente al caso del metano le concentrazioni degli idrocarburi non metanici sono contenute e simili in tutta l'area monitorata. Rispetto al 2015 i dati di metano rilevati risultano mediamente inferiori.

Le unità odorimetriche presentano valori inferiori rispetto allo stesso periodo di monitoraggio dell'anno precedente (2015). Infatti il valore medio 2016 registrato di unità odorimentiche è di circa 30 OUE/m3 su tutti i punti monitorati, tranne un unico picco registrato sul punto QA3 di 430 OUE/m3 nel mese luglio, comunque rientrato nei monitoraggi successivi.

10.2 BIOGAS

La composizione del biogas captato nella linea vecchia e in quella nuova mostra valori standard per miscele di gas generati da discariche di rifiuti assimilabili agli urbani.

Fra le 12 campagne di monitoraggio si osservano valori confrontabili in entrambe le linee vecchia e nuova, ad eccezione di valori lievemente più bassi di NH3 sulla linea vecchia soprattutto nella seconda parte del 2016, rispetto alla nuova e rispetto al resto del 2016.

Per le sostanze organiche volatili i valori più elevati sono riscontrati in entrambe le linee nella prima metà del 2016, rispetto alle concentrazioni determinate negli altri mesi.

In merito ad idrogeno ed anidride carbonica nel confronto fra linea vecchia e nuova non si osservano differenze significative.

Polveri, mercaptani ed Acido solforico risultano sempre inferiori al limite di rilevabilità.

Il contenuto di metano è elevato e quindi atto ad essere utilizzato per cogenerazione con valori mediamente registrati intorno a 50 % mol sia nella linea vecchia che nella linea nuova.

Rispetto alle campagne di indagine del 2015, i dati del 2016 risultano del tutto comparabili, con l'eccezione dei valori di NH3 che risultano mediamente superiori soprattutto nelle prima metà del 2016.

10.3 PERCOLATO

Le concentrazioni di cadmio, cromo esavalente, piombo, manganese, nichel, rame, mercurio, idrocarburi policiclici aromatici, solventi organici, composti organoalogenati, cloruro di vinile e pesticidi sono risultate sempre inferiori o prossime al limite di rilevabilità.

Per l'azoto nitrico e nitroso i valori sono inferiori o uguali al rispettivo limite di rilevabilità in entrambi i siti.

Per quanto riguarda il BOD5 dal confronto fra le campagne di monitoraggio mensile del 2016 si osservano valori simili in entrambi i siti PV1 e PV2, con valori mediamente inferiori rispetto al corrispondente periodo del 2015 per entrambi i punti di prelievo.

pag 106 di 110

Relativamente al ferro si registrano valori simili in entrambi i siti PV1 e PV2, con valori mediamente inferiori rispetto al 2015 per entrambi i punti di prelievo, a parte un picco registrato nel gennaio 2016 sul punto PV1.

Relativamente al Carbonio organico totale i valori registrati nel 2016 sono mediamente inferiori rispetto ai dati registrati nel 2015.

I dati di conducibilità del 2016 risultano mediamente inferiori rispetto al 2015.

I dati di cloruri e solfati del 2016 rientrano nella variabilità dei parametri determinata nel corso del 2015, ad eccezione di un picco registrato per entrambi i parametri nell'aprile 2016.

I dati relativi all'azoto ammoniacale del 2016 risultano in linea rispetta a quanto determinato nel 2015, tranne che per un unico picco registrato nel campione PV2 nel febbraio 2016.

I risultati relativi a calcio, sodio, potassio e magnesio sono mediamente confrontabili con i dati del 2015.

10.4 ACQUE SUB-SUPERFICIALI E DI IMPREGNAZIONE

Per quanto riguarda le acque dei piezometri a seguito dei lavori di ampliamento della discarica nel corso del periodo marzo-settembre 2016 sono stati campionati i piezometri S1, SA1, S2, SA2, SA3, S3, SA4, S4, SA5, S5, SA6, di cui

- Nella campagna di marzo non è stato possibile campionare i piezometri S3, S5 e SA6 perché inaccessibili;
- Nella campagna di giugno 2016 non è stato possibile campionare i piezometro S3, S4, S5, SA5 e SA6 poiché inaccessibili;
- Nella campagna di settembre 2016 risultavano accessibili solo 4 piezometri SA1,
 S2, SA2, SP1, poiché gli altri non erano più esistenti.

Nel dicembre 2016 a seguito dei lavori di ampliamento della discarica i vecchi piezometri sono stati quasi completamente smantellati e sostituiti con n.8 nuovi piezometri di cui 2 di monte: ASM1 e ASM2, e 6 di valle ASV1, ASV2, ASV3, ASV4, ASV5, ASV6. Il piezometro ASM1 corrisponde al vecchio piezometro S1, mentre gli altri sono dì nuova realizzazione. Tali piezometri sono stati previsti nel piano di sorveglianza che è parte integrante dell'AIA n. 106 rilasciata. Su tutti i piezometri sono state

pag 107 di 110

effettuate le determinazione dei parametri chimico-fisici secondo il protocollo analitico già in essere.

Tali piezometri sono stati campionati per la prima volta durante la campagna di monitoraggio del Dicembre 2016. Si fa presente che sui punti ASM2, ASV3, ASV4, ASV5 e ASV6 non è stata rilevata acqua.

I risultati analitici ottenuti sono stati confrontati con le CSC (Concentrazioni Soglia di Contaminazione) per le acque sotterranee definite dal D.Lgs. 152/06 tab. 2 alla parte IV, Titolo V e con i "valori di fondo naturale" definiti da ARPAM attraverso lo studio commissionato dal Comune di Corinaldo.

Dal confronto della campagne di indagine del periodo marzo-settembre 2016 con i dati del 2015 emergono le seguenti considerazioni:

- In merito ai parametri più significativi non sottoposti a limite normativo per le acque sotterranee quali conducibilità, BOD5 e Cloruri i valori registrati nel 2016 sono mediamente più bassi rispetto al 2015;
- Relativamente la parametro Solfati i valori sono complessivamente inferiori rispetto ai dati del 2015 e nel corso del 2016 si sono registrati molti meno superamenti del valore di fondo naturale rispetto allo stesso periodo del 2014.
- I valori registrati di ferro risultano invece in linea con i dati del 2015 e sempre al limite normativo tranne il caso di un isolato superamento registrato sul piezometro SA4 nel giugno 2016.
- Anche per i fluoruri si verifica sempre il rispetto del limite normativo con tenori decisamente inferiori rispetto al 2015;
- Infine per Nichel, Zinco e Manganese le concentrazioni rilevate nel 2016 sono mediamente inferiori rispetto a quanto registrato nel 2015: in particolare per lo zinco non si rilevano superamenti del valore limite, mentre nichel e manganese evidenziano sporadici superamenti del valore di fondo natura le Arpam a differenza di quanto era stato registrato nel 2015, con superamenti più frequenti.

In merito alla campagna dicembre 2016 emergono le seguenti considerazioni:

- per i solfati si rilevano superamenti dei valori di fondo naturale sulle acque dei piezometri nei punti ASMI (ex S1) e ASV2.
- Per lo zinco non si rilevano superamenti del limite normativo;
- per il ferro non si rilevano superamenti in nessuno dei piezometri indagati;
- per il manganese si rileva un superamento del valore di fondo naturale sul piezometro ASV1;
- per il nichel si rilevano superamenti del valore di fondo naturale sui piezometri ASV e ASV2;
- non si evidenziano superamenti per nessuno degli altri parametri indagati;

10.5 ACQUE DI SOTTOTELO

Le acque di sottotelo sono rappresentative di linee sotterranee di captazione. I punti di campionamento sono di nuova realizzazione e sono denominati AS1 e AS2 di cui AS1 è una linea realizzata alla base della "vecchia discarica" in corrispondenza dei vecchi piezometri oggetto del precedente monitoraggio, mentre AS2 raccoglie più linee di sottotelo realizzate sul lotto in ampliamento posizionate sul versante opposto rispetto alla discarica esistente.

Data l'origine di tali acque, correlabile con le acque sub superficiali e di impregnazione, il programma analitico adottato è lo stesso già in essere per le acque sotterranee.

I risultati analitici ottenuti sono stati confrontati con le CSC (Concentrazioni Soglia di Contaminazione) per le acque sotterranee definite dal D.Lgs. 152/06 tab. 2 alla parte IV, Titolo V e con i "*valori di fondo naturale*" definiti da ARPAM attraverso lo studio commissionato dal Comune di Corinaldo.

Dal confronto con la normativa vigente (D.Lgs 152/2006. All.5 - Tab.2) e con i valori di fondo naturale determinati da ARPAM si può osservare che non si evincono superamenti rispetto ai valori di fondo naturale definiti da ARPAM su nessuno dei due punti monitorati.

10.6 ACQUE DI RUSCELLAMENTO

Per quanto riguarda le acque di ruscellamento sino al settembre 2016 erano presenti 3 postazioni di misura, di cui una interna all'area perimetrale della discarica denominato punto n 1 – drenaggio sicurezza e due esterne ad essa, punti 2 e 3, rispettivamente n.2 fosso Casalta a monte dell'impianto e n.3 fosso Casalta a valle dell'impianto. Di queste:

- Durante il monitoraggio del marzo 2016 non è stato possibile campionare nessuno dei 3 campioni di acqua di ruscellamento per inaccessibilità dei punti di prelievo.
- Durante il giugno 2016 è stato possibile campionare solo il punto denominato punto 2 – fosso Casalta a monte.
- Analogamente anche durante il monitoraggio del settembre 2016 è stato possibile campionare solo il Punto2 - fosso Casalta a monte.

Il confronto dei risultati ottenuti nell'ambito delle campagne dal marzo al settembre 2016 nel Punto2) con la normativa considerata (tab 3 all' All 5, parte III del D.Lgs. 152/06) rileva per tutti i parametri analizzati la conformità con i limiti previsti per gli scarichi idrici in acque superficiali.

A seguito dei lavori di ampliamento della discarica i vecchi punti di prelievo delle acque di ruscellamento sono stati completamente smantellati e sostituiti da n. 9 punti di prelievo di cui 3 monte ARCM1-ARCM2-ARCM3, 4 intermedi AR1-AR2-AR3-AR4-AR5 ed 1 di valle ARCV; Il punto ARCM1 corrisponde nella situazione attuale anche al punto AR1. Dal confronto con la normativa considerata (D.Lgs 152/2006, All.5 - Tab.3, parte III) si rilevano alcun superamenti dei valori limite per gli scarichi idrici in acque superficiali, in particolare di solfati sul punto di monte ARCM1, azoto nitroso sul punto AR4, ferro sui punti AR2 e AR4 ed un lievissimo supermento di rame su AR2.

10.7 SEDIMENTO FOSSO CASALTA

Il confronto con la normativa vigente (D.Lgs 152/2006, All.5 - Tab.1, Col. B) non rileva alcun superamento dei valori limite.

Il confronto tra i valori del sito a monte e quelli del sito a valle della discarica non evidenzia differenze significative per tutti i parametri nel mese di dicembre 2016.

I risultati sono confrontabili anche con i valori determinati nel dicembre 2015.